Question

Let S = {0,1} and A be any set. Prove that there exists a bijection between...

Let S = {0,1} and A be any set. Prove that there exists a bijection between P(A) and the set of functions between A and S.

Homework Answers

Answer #1

Kindly give a thumbs up

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Theorem: there exists a bijection between the Cantor set C and the unit interval [0,1]. Base...
Theorem: there exists a bijection between the Cantor set C and the unit interval [0,1]. Base Case: prove that for , ·         x1 = 0 implies x in [1, 1/3], ·         x1 = 1 implies x in (1/3, 2/3), and ·         x1 = 2 implies x in [2/3 , 1] . (must deal with endpoint confusion). Induction step: At step n, suppose that the ternary expansion                 x = x1x2 x3 … xn … comprised ONLY of 0’s and 2’s describes a pathway...
Let S be a set in a vector space V and v any vector. Prove that...
Let S be a set in a vector space V and v any vector. Prove that span(S) = span(S ∪ {v}) if and only if v ∈ span(S).
(2) Let f : A → A be a bijection. Suppose ∅ ⊂ S ⊆ A...
(2) Let f : A → A be a bijection. Suppose ∅ ⊂ S ⊆ A and f : S → S is also a bijection. Show that f is bijection f : (A − S) → (A − S).
Prove, that between any rational numbers there exists an irrational number.
Prove, that between any rational numbers there exists an irrational number.
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Problem 5. Let A be a set. Define C to be the collection of all functions...
Problem 5. Let A be a set. Define C to be the collection of all functions f : {0,1} → A. Prove that |A×A| = |C| by constructing a bijection F : A × A → C.
Prove any isometry of R^2 is bijection and its inverse is an isometry.
Prove any isometry of R^2 is bijection and its inverse is an isometry.
3. (8 marks) Let T be the set of integers that are not divisible by 3....
3. Let T be the set of integers that are not divisible by 3. Prove that T is a countable set by finding a bijection between the set T and the set of integers Z, which we know is countable from class. (You need to prove that your function is a bijection.)
Let A be a nonempty set. Prove that the set S(A) = {f : A →...
Let A be a nonempty set. Prove that the set S(A) = {f : A → A | f is one-to-one and onto } is a group under the operation of function composition.