Question

Problem 5. Let A be a set. Define C to be the collection of all functions...

Problem 5. Let A be a set. Define C to be the collection of all functions f : {0,1} → A. Prove that |A×A| = |C| by constructing a bijection F : A × A → C.

Homework Answers

Answer #1

plz do like

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let C [0,1] be the set of all continuous functions from [0,1] to R. For any...
Let C [0,1] be the set of all continuous functions from [0,1] to R. For any f,g ∈ C[0,1] define dsup(f,g) = maxxE[0,1] |f(x)−g(x)| and d1(f,g) = ∫10 |f(x)−g(x)| dx. a) Prove that for any n≥1, one can find n points in C[0,1] such that, in dsup metric, the distance between any two points is equal to 1. b) Can one find 100 points in C[0,1] such that, in d1 metric, the distance between any two points is equal to...
1. Let A = {1,2,3,4} and let F be the set of all functions f from...
1. Let A = {1,2,3,4} and let F be the set of all functions f from A to A. Prove or disprove each of the following statements. (a)For all functions f, g, h∈F, if f◦g=f◦h then g=h. (b)For all functions f, g, h∈F, iff◦g=f◦h and f is one-to-one then g=h. (c) For all functions f, g, h ∈ F , if g ◦ f = h ◦ f then g = h. (d) For all functions f, g, h ∈...
Let S = {0,1} and A be any set. Prove that there exists a bijection between...
Let S = {0,1} and A be any set. Prove that there exists a bijection between P(A) and the set of functions between A and S.
Let S be the collection of all sequences of real numbers and define a relation on...
Let S be the collection of all sequences of real numbers and define a relation on S by {xn} ∼ {yn} if and only if {xn − yn} converges to 0. a) Prove that ∼ is an equivalence relation on S. b) What happens if ∼ is defined by {xn} ∼ {yn} if and only if {xn + yn} converges to 0?
Discrete mathematics function relation problem Let P ∗ (N) be the set of all nonempty subsets...
Discrete mathematics function relation problem Let P ∗ (N) be the set of all nonempty subsets of N. Define m : P ∗ (N) → N by m(A) = the smallest member of A. So for example, m {3, 5, 10} = 3 and m {n | n is prime } = 2. (a) Prove that m is not one-to-one. (b) Prove that m is onto.
Let f and g be continuous functions from C to C and let D be a...
Let f and g be continuous functions from C to C and let D be a dense subset of C, i.e., the closure of D equals to C. Prove that if f(z) = g(z) for all x element of D, then f = g on C.
Let {??}?∈? be an indexed collection of subsets of a set ?. Prove: a. ?\(⋃ ??)...
Let {??}?∈? be an indexed collection of subsets of a set ?. Prove: a. ?\(⋃ ??) ?∈? = ⋂ (?\??) ?∈? b. ?\(⋂ ??) = ⋃ (?\??) ?∈?? ∈? Note: These are DeMorgan’s Laws for indexed collections of sets.
Let f:[0,1]——>R be define by f(x)= x if x belong to rational number and 0 if...
Let f:[0,1]——>R be define by f(x)= x if x belong to rational number and 0 if x belong to irrational number and let g(x)=x (a) prove that for all partitions P of [0,1],we have U(f,P)=U(g,P).what does mean about U(f) and U(g)? (b)prove that U(g) greater than or equal 0.25 (c) prove that L(f)=0 (d) what does this tell us about the integrability of f ?
1. Let A and B be sets. The set B is of at least the same...
1. Let A and B be sets. The set B is of at least the same size as the set A if and only if (mark all correct answers) there is a bijection from A to B there is a one-to-one function from A to B there is a one-to-one function from B to A there is an onto function from B to A A is a proper subset of B 2. Which of these sets are countable? (mark all...
Let S be the set R∖{0,1}. Define functions from S to S by ϵ(x)=x, f(x)=1/(1−x), g(x)=(x−1)/x....
Let S be the set R∖{0,1}. Define functions from S to S by ϵ(x)=x, f(x)=1/(1−x), g(x)=(x−1)/x. Show that the collection {ϵ,f,g} generates a group under composition and compute the group operation table.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT