Question

3. (8 marks) Let T be the set of integers that are not divisible by 3....

3. Let T be the set of integers that are not divisible by 3. Prove that T is a countable set by finding a bijection between the set T and the set of integers Z, which we know is countable from class. (You need to prove that your function is a bijection.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Let N denote the nonnegative integers, and Z denote the integers. Define the function g...
3. Let N denote the nonnegative integers, and Z denote the integers. Define the function g : N→Z defined by g(k) = k/2 for even k and g(k) = −(k + 1)/2 for odd k. Prove that g is a bijection. (a) Prove that g is a function. (b) Prove that g is an injection . (c) Prove that g is a surjection.
Let E = {0, 2, 4, . . .} be the set of non-negative even integers...
Let E = {0, 2, 4, . . .} be the set of non-negative even integers Prove that |Z| = |E| by defining an explicit bijection
1. Let A and B be sets. The set B is of at least the same...
1. Let A and B be sets. The set B is of at least the same size as the set A if and only if (mark all correct answers) there is a bijection from A to B there is a one-to-one function from A to B there is a one-to-one function from B to A there is an onto function from B to A A is a proper subset of B 2. Which of these sets are countable? (mark all...
Let N denote the set of positive integers, and let x be a number which does...
Let N denote the set of positive integers, and let x be a number which does not belong to N. Give an explicit bijection f : N ∪ x → N.
(8 marks) Let S = {(a1, a2, . . . , an)| n ≥ 1, ai...
Let S = {(a1, a2, . . . , an)| n ≥ 1, ai ∈ Z ≥0 for i = 1, 2, . . . , n, an 6= 0}. So S is the set of all finite ordered n-tuples of nonnegative integers where the last coordinate is not 0. Find a bijection from S to Z +.
Prove that from any set A which contains 138 distinct integers, there exists a subset B...
Prove that from any set A which contains 138 distinct integers, there exists a subset B which contains at least 3 distinct integers and the sum of the elements in B is divisible by 46. Show all your steps
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
How many positive integers less than 50 are not divisible by 2, 3 or 5? [8]...
How many positive integers less than 50 are not divisible by 2, 3 or 5? [8] Check your solution by listing the numbers and eliminating those which are divisible by 2, 3 or 5 and counting the remainder.
1. Let Z[i] denote the set of all ‘complex numbers with integer coefficients’:the set of all...
1. Let Z[i] denote the set of all ‘complex numbers with integer coefficients’:the set of all a + bi such that a and b are integers. We say that z is composite if there exist two complex integers v and w such that z=vw and |v|>1 and |w|>1. Then z is prime if it is not composite A) Prove that every complex integer z, |z| > 1, can be expressed as a product of prime complex integers.