Question

Is is possible for any finite field be ordered?

Is is possible for any finite field be ordered?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that for any positive integer n, a field F can have at most a finite...
Prove that for any positive integer n, a field F can have at most a finite number of elements of multiplicative order at most n.
(Modern Algebra) Show that every finite subgroup of the multiplicative group of a field is cyclical....
(Modern Algebra) Show that every finite subgroup of the multiplicative group of a field is cyclical. (Hint: consider m as the order of the finite subgroup and analyze the roots of the polynomial (x ^ m) - 1 in field F)
Let F be a field. It is a general fact that a finite subgroup G of...
Let F be a field. It is a general fact that a finite subgroup G of (F^*,X) of the multiplicative group of a field must be cyclic. Give a proof by example in the case when |G| = 100.
Prove that if E is a finite field with characteristic p, then the number of elements...
Prove that if E is a finite field with characteristic p, then the number of elements in E equals p^n, for some positive integer n.
Let S denote the set of all possible finite binary strings, i.e. strings of finite length...
Let S denote the set of all possible finite binary strings, i.e. strings of finite length made up of only 0s and 1s, and no other characters. E.g., 010100100001 is a finite binary string but 100ff101 is not because it contains characters other than 0, 1. a. Give an informal proof arguing why this set should be countable. Even though the language of your proof can be informal, it must clearly explain the reasons why you think the set should...
find jacobson radical of polynomials and prove every finite divison ring is field
find jacobson radical of polynomials and prove every finite divison ring is field
Prove that if F is a field and K = FG for a finite group G...
Prove that if F is a field and K = FG for a finite group G of automorphisms of F, then there are only finitely many subfields between F and K. Please help!
How to calcualte the electric field of a point on the z axis inside a finite...
How to calcualte the electric field of a point on the z axis inside a finite cylindrical charge distribution? (use rings of charge)
Is it possible for a group G to contain a non-identity element of finite order and...
Is it possible for a group G to contain a non-identity element of finite order and also an element of infinite order? If yes, illustrate with an example. If no, give a convincing explanation for why it is not possible.
how can i write all possible automorphism of field Q(√2,√3)?is there any general equations ?please give...
how can i write all possible automorphism of field Q(√2,√3)?is there any general equations ?please give me the steps of the answers
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT