Question

How to calcualte the electric field of a point on the z axis inside a finite...

How to calcualte the electric field of a point on the z axis inside a finite cylindrical charge distribution? (use rings of charge)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The electric field in a point on the central axis of a uniformly charged very thin...
The electric field in a point on the central axis of a uniformly charged very thin ring is given by the expression: E = (k*lambda*2pi*R)/((x^2 +R^2)^(3/2)) i cap where R is the radius of the ring, lambda is the linear charge density, and x is the distance of the point on the central axis to the center of the ring. Use this expression (do not derive it!) to calculate the field in a point inside a thin shell with uniform...
A uniform electric field is directed along the +x axis and a point charge q= +6.0...
A uniform electric field is directed along the +x axis and a point charge q= +6.0 nC is moving in the electric field. First, th charge travels 40cm along the +x axis and then 30 cm along the -y axis. Find the magnitude of the electric field if the total work done by the field in moving the charge is W= 3.6 x 10^-6 J.
A. Calculate the magnitude and direction of the electric field point at Z in the diagram...
A. Calculate the magnitude and direction of the electric field point at Z in the diagram below q1=2.0*10^-5C. q2=8.0*10^-6C - <-----60cm------------> + <------30cm-----> X. Y Z B. A small test charge of +1.0 uC experiences an electric force of 6.0810^-6 N to the right. 1. Determine the electric field strength at that point. 2. Calculate the force that would be exerted on a charge of -7.2*10^-4 C located at the same point, in place of the   test charge C. A...
A thin rod extends along the z-axis form z = -d to z = d. The...
A thin rod extends along the z-axis form z = -d to z = d. The rod carries a charge Q uniformly distributed along its length 2d with linear charge density λ = Q/2d. a) Find the electric potential at a point z > d along the z-axis. Indicate clearly where you have chosen your zero reference point for your potential. b) Use the relationship E = - ∇ V to find the electric field at a point z >...
An electric charge on the z-axis oscillates sinusoidally about the origin. A distant observer is located...
An electric charge on the z-axis oscillates sinusoidally about the origin. A distant observer is located at a point on the +x axis. At the observer's location, what are the directions of a) The electric field oscillation b) The magnetic field oscillation c) The electromagnetic wave propagation?
a) Use Gauss’s Law to derive radial dependence of the electric field inside a very long...
a) Use Gauss’s Law to derive radial dependence of the electric field inside a very long cylindrical shell of radius R and surface charge density σ? b) Same as a) except outside the shell? explain it clear plz
Two charges are on the z-axis, charge +q at z = +a and −q at z...
Two charges are on the z-axis, charge +q at z = +a and −q at z = −a. (Hint: This is NOT a continuous charge distribution but two discrete point charges.) (a) Find the electric potential V (x, y, z) at a field point r = (x, y, z). (b) Find the potential V (x, y, 0) at a point (x, y, 0) on the xy-plane. (c) What is the total electrostatic energy of this system? (d) Using the result...
What happen to the electric field inside the metal conductor? How is the electric field affected...
What happen to the electric field inside the metal conductor? How is the electric field affected by the presence of the floating conductor?
How do you find the direction of the electric field inside of a moving conductor? How...
How do you find the direction of the electric field inside of a moving conductor? How do you find the direction of the current inuced in a circuit by a moving conductor? What is the polarity of charge separation created in a conductor that's moving inside of a magnetic field? Pictures would be greatly beneficial!
An infinitely long cylinder (radius R, centered along the z-axis) carries a surface charge distribution σ(s...
An infinitely long cylinder (radius R, centered along the z-axis) carries a surface charge distribution σ(s = R,φ) = σ0 (4sinφ + 6cos2φ) . Using electricity and magnetism a. Find expressions for the potential and electric field at arbitrary points inside and outside the cylinder. b. Find the force on a test charge 3q at the point (x = 3R, y = R, z = 4R), assuming the test charge is too small to affect the potentials / fields found...