Question

Prove Inn(G) is cyclic if and only if Inn(G) is trivial if and only if G...

Prove Inn(G) is cyclic if and only if Inn(G) is trivial if and only if G is abelian.

I am trying to show equivalence of this statement. 1=>2, 2=>3, 3=>1 . Or if perhaps another way is easier than those implications.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that for a square n ×n matrix A, Ax = b (1) has one and...
Prove that for a square n ×n matrix A, Ax = b (1) has one and only one solution if and only if A is invertible; i.e., that there exists a matrix n ×n matrix B such that AB = I = B A. NOTE 01: The statement or theorem is of the form P iff Q, where P is the statement “Equation (1) has a unique solution” and Q is the statement “The matrix A is invertible”. This means...
A group G is a simple group if the only normal subgroups of G are G...
A group G is a simple group if the only normal subgroups of G are G itself and {e}. In other words, G is simple if G has no non-trivial proper normal subgroups. Algebraists have proven (using more advanced techniques than ones we’ve discussed) that An is a simple group for n ≥ 5. Using this fact, prove that for n ≥ 5, An has no subgroup of order n!/4 . (This generalizes HW5,#3 as well as our counterexample from...
Hi I am trying to prove this statement but I'm not sure how to go about...
Hi I am trying to prove this statement but I'm not sure how to go about doing so. The statement is: Let q be greater than or equal to 2 be a positive integer. If for all integers a and a,whenever q|ab, q|a, or q|b, then q is prime.
Problem 8. Suppose that H has index 2 in G. Prove that H is normal in...
Problem 8. Suppose that H has index 2 in G. Prove that H is normal in G. (Hint: Usually to prove that a subgroup is normal, the conjugation criterion (Theorem 17.4) is easier to use than the definition, but this problem is a rare exception. Since H has index 2 in G, there are only two left cosets, one of which is H itself – use this to describe the other coset. Then do the same for right 1 cosets....
I am trying to prove that (sn) is a Cauchy sequence where |sn+1-sn| < 2-n. So...
I am trying to prove that (sn) is a Cauchy sequence where |sn+1-sn| < 2-n. So far, I have figured out that |sm-sn| <= 1/2m+1 + 1/2m+2 + ... + 1/2n. I want to try to not use the geometric series condition. My professor hinted that the right hand side is less than 2/2n but I'm not sure how to find that or how to go from here!
Determine if H is subgroup of G, if so prove it, if not explain 1. H...
Determine if H is subgroup of G, if so prove it, if not explain 1. H = {A in GL(2,c): det(A)3 =1}, G = GL(2,c) with matrix multiplication 2. H = {A belongs to GL(n,IR): get(A)=-1}, G=GL(n,IR) with matrix multiplication 3. H = {A belongs to GL(2,IR): AAT=I}, G=GL(2,IR) with matrix multiplication
1. Prove that an integer a is divisible by 5 if and only if a2 is...
1. Prove that an integer a is divisible by 5 if and only if a2 is divisible by 5. 2. Deduce that 98765432 is not a perfect square. Hint: You can use any theorem/proposition or whatever was proved in class. 3. Prove that for all integers n,a,b and c, if n | (a−b) and n | (b−c) then n | (a−c). 4. Prove that for any two consecutive integers, n and n + 1 we have that gcd(n,n + 1)...
let g be a group. Call an isomorphism from G to itself a self similarity of...
let g be a group. Call an isomorphism from G to itself a self similarity of G. a) show that for any g ∈ G, the map cg : G-> G defined by cg(x)=g^(-1)xg is a self similarity group b) If G is cyclic with generator a, and sigma is a self similarity of G, prove that sigma(a) is a generator of G c) How many self-similarities does Z have? How many self similarities does Zn have? How many self-similarities...
Please note n's are superscripted. (a) Use mathematical induction to prove that 2n+1 + 3n+1 ≤...
Please note n's are superscripted. (a) Use mathematical induction to prove that 2n+1 + 3n+1 ≤ 2 · 4n for all integers n ≥ 3. (b) Let f(n) = 2n+1 + 3n+1 and g(n) = 4n. Using the inequality from part (a) prove that f(n) = O(g(n)). You need to give a rigorous proof derived directly from the definition of O-notation, without using any theorems from class. (First, give a complete statement of the definition. Next, show how f(n) =...
1.start with the GDP identity: Y=C+I+G+NX, and prove that saving i equal to the sum of...
1.start with the GDP identity: Y=C+I+G+NX, and prove that saving i equal to the sum of domestic investment(I) and net capital outflow (NCO), S=I+NCO. 2.Describe the concept of Misperception Theory. 3. Explain the consequence of policy that the Central Bank selling government bonds in the open market. No diagram is needed in your answer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT