Question

1. Prove that an integer a is divisible by 5 if and only if a2 is...

1. Prove that an integer a is divisible by 5 if and only if a2 is divisible by 5.


2. Deduce that 98765432 is not a perfect square. Hint: You can use any theorem/proposition or whatever was proved in class.

3. Prove that for all integers n,a,b and c, if n | (a−b) and n | (b−c) then n | (a−c).

4. Prove that for any two consecutive integers, n and n + 1 we have that gcd(n,n + 1) = 1. Hint: Prove that for all integers k,a and b, if k | a and k | b then k | (a−b).

5. Use the Euclidean Algorithm to find the gcd(a,b) in the cases:

1* a = 1072 and b = 462,

2*   a = 888 and b = 54.

6. Prove that the sum of four consecutive natural numbers is never divisible by 4.

Note: please answer Q# 1,2,3,4,5 and 6 with step by step, so i can follow up with you and understand.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.13. Let a1, a2, . . . , ak be integers with gcd(a1, a2, . ....
1.13. Let a1, a2, . . . , ak be integers with gcd(a1, a2, . . . , ak) = 1, i.e., the largest positive integer dividing all of a1, . . . , ak is 1. Prove that the equation a1u1 + a2u2 + · · · + akuk = 1 has a solution in integers u1, u2, . . . , uk. (Hint. Repeatedly apply the extended Euclidean algorithm, Theorem 1.11. You may find it easier to prove...
Prove that an integer is divisible by 2 if and only if the digit in the...
Prove that an integer is divisible by 2 if and only if the digit in the units place is divisible by 2. (Hint: Look at a couple of examples: 58 = 5 10 + 8, while 57 = 5 10 + 7. What does Lemma 1.3 suggest in the context of these examples?) (Lemma 1.3. If d is a nonzero integer such that d|a and d|b for two integers a and b, then for any integers x and y, d|(xa...
Prove by induction that 5^n + 12n – 1 is divisible by 16 for all positive...
Prove by induction that 5^n + 12n – 1 is divisible by 16 for all positive integers n.
Answer the following question: 1. a. Use an affine cipher x 7→ 3x + 1 (mod...
Answer the following question: 1. a. Use an affine cipher x 7→ 3x + 1 (mod 26) to encode “Baltimore”. b. Let a and b be integers. What does it mean to say a divides b? Provide a precise definition and include the proper notation. c. Let a, b, c, and n be integers with n 6= 0. Suppose that a ≡ b (mod n) and b ≡ c (mod n). Prove that a ≡ c (mod n). d. Use...
Prove the Fibonacci numbers Fn. (a) If n is a multiple of 5, then Fn is...
Prove the Fibonacci numbers Fn. (a) If n is a multiple of 5, then Fn is divisible by 4. (b) Two Consecutive Fibonacci numbers are not divisible by 7. Please answer correctly and explain each step. Thanks
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
Prove that if n is a positive integer greater than 1, then n! + 1 is...
Prove that if n is a positive integer greater than 1, then n! + 1 is odd Prove that if a, b, c are integers such that a2 + b2 = c2, then at least one of a, b, or c is even.
Let n ≥ 1 be an integer. Use the Pigeonhole Principle to prove that in any...
Let n ≥ 1 be an integer. Use the Pigeonhole Principle to prove that in any set of n + 1 integers from {1, 2, . . . , 2n}, there are two elements that are consecutive (i.e., differ by one).
. Prove that 2^(2n-1) + 3^(2n-1) is divisible by 5 for every natural number n.
. Prove that 2^(2n-1) + 3^(2n-1) is divisible by 5 for every natural number n.
Prove the following statements: 1- If m and n are relatively prime, then for any x...
Prove the following statements: 1- If m and n are relatively prime, then for any x belongs, Z there are integers a; b such that x = am + bn 2- For every n belongs N, the number (n^3 + 2) is not divisible by 4.