Question

prove by induction that n(n+1)(n+2) is divisible by 6 for n=1,2...

prove by induction that n(n+1)(n+2) is divisible by 6 for n=1,2...

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use mathematical induction to prove 7^(n) − 1 is divisible by 6, for each integer n...
Use mathematical induction to prove 7^(n) − 1 is divisible by 6, for each integer n ≥ 1.
Consider the following expression: 7^n-6*n-1 Using induction, prove the expression is divisible by 36. I understand...
Consider the following expression: 7^n-6*n-1 Using induction, prove the expression is divisible by 36. I understand the process of mathematical induction, however I do not understand how the solution showed the result for P_n+1 is divisible by 36? How can we be sure something is divisible by 36? Please explain in great detail.
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by...
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by 8.
Prove that 5n2 +15n is divisible by 10 for every n ≥ 2, by mathematical induction.
Prove that 5n2 +15n is divisible by 10 for every n ≥ 2, by mathematical induction.
Prove by induction that 5^n + 12n – 1 is divisible by 16 for all positive...
Prove by induction that 5^n + 12n – 1 is divisible by 16 for all positive integers n.
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive...
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive integer n.
Prove using induction that for any m,n is an element of natural number, if |{1,2,....,m}|= |{1,2,...,n}|...
Prove using induction that for any m,n is an element of natural number, if |{1,2,....,m}|= |{1,2,...,n}| then n=m
Prove by induction that 5n + 12n – 1 is divisible by 16 for all positive...
Prove by induction that 5n + 12n – 1 is divisible by 16 for all positive integers n.
Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd...
Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd integer k.
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n....
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n. b) For any n ∈ N and any set S = {p1, . . . , pn} of prime numbers, there is a prime number which is not in S. c) Prove using strong induction that every natural number n > 1 is divisible by a prime.