Question

Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd...

Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd integer k.

Homework Answers

Answer #1

Overwrite letter is p

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by...
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by 8.
Without using induction, prove that for x is an odd, positive integer, 3x ≡−1 (mod 4)....
Without using induction, prove that for x is an odd, positive integer, 3x ≡−1 (mod 4). I'm not sure how to approach the problem. I thought to assume that x=2a+1 and then show that 3^x +1 is divisible by 4 and thus congruent to 3x=-1(mod4) but I'm stuck.
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive...
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive integer n.
Prove that 5n2 +15n is divisible by 10 for every n ≥ 2, by mathematical induction.
Prove that 5n2 +15n is divisible by 10 for every n ≥ 2, by mathematical induction.
Prove by induction that 5n + 12n – 1 is divisible by 16 for all positive...
Prove by induction that 5n + 12n – 1 is divisible by 16 for all positive integers n.
Prove by induction that 5^n + 12n – 1 is divisible by 16 for all positive...
Prove by induction that 5^n + 12n – 1 is divisible by 16 for all positive integers n.
Use mathematical induction to prove 7^(n) − 1 is divisible by 6, for each integer n...
Use mathematical induction to prove 7^(n) − 1 is divisible by 6, for each integer n ≥ 1.
Prove by mathematical induction: n3​ ​– 7n + 3 is divisible by 3, for each integer...
Prove by mathematical induction: n3​ ​– 7n + 3 is divisible by 3, for each integer n ≥ 1.
Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n
Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n
Suppose we want to prove statement "Every even number squared is divisible by 4" using induction....
Suppose we want to prove statement "Every even number squared is divisible by 4" using induction. State and prove the base case.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT