Question

Prove that 5n2 +15n is divisible by 10 for every n ≥ 2, by mathematical induction.

Prove that 5n2 +15n is divisible by 10 for every n ≥ 2, by mathematical induction.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(10) Use mathematical induction to prove that 7n – 2n  is divisible by 5 for all n...
(10) Use mathematical induction to prove that 7n – 2n  is divisible by 5 for all n >= 0.
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive...
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive integer n.
Use mathematical induction to prove 7^(n) − 1 is divisible by 6, for each integer n...
Use mathematical induction to prove 7^(n) − 1 is divisible by 6, for each integer n ≥ 1.
Prove by mathematical induction: n3​ ​– 7n + 3 is divisible by 3, for each integer...
Prove by mathematical induction: n3​ ​– 7n + 3 is divisible by 3, for each integer n ≥ 1.
prove by induction that n(n+1)(n+2) is divisible by 6 for n=1,2...
prove by induction that n(n+1)(n+2) is divisible by 6 for n=1,2...
Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd...
Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd integer k.
Consider the following expression: 7^n-6*n-1 Using induction, prove the expression is divisible by 36. I understand...
Consider the following expression: 7^n-6*n-1 Using induction, prove the expression is divisible by 36. I understand the process of mathematical induction, however I do not understand how the solution showed the result for P_n+1 is divisible by 36? How can we be sure something is divisible by 36? Please explain in great detail.
Prove, using mathematical induction, that (1 + 1/ 2)^ n ≥ 1 + n /2 ,whenever...
Prove, using mathematical induction, that (1 + 1/ 2)^ n ≥ 1 + n /2 ,whenever n is a positive integer.
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n +...
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n + 2)! Proof (by mathematical induction): Let P(n) be the inequality 2n < (n + 2)!. We will show that P(n) is true for every integer n ≥ 0. Show that P(0) is true: Before simplifying, the left-hand side of P(0) is _______ and the right-hand side is ______ . The fact that the statement is true can be deduced from that fact that 20...
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n....
Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n. b) For any n ∈ N and any set S = {p1, . . . , pn} of prime numbers, there is a prime number which is not in S. c) Prove using strong induction that every natural number n > 1 is divisible by a prime.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT