Question

Prove by induction. a ) If a, n ∈ N and a∣n then a ≤ n....

Prove by induction.

a ) If a, n ∈ N and a∣n then a ≤ n.

b) For any n ∈ N and any set S = {p1, . . . , pn} of prime numbers, there is a prime number which is not in S.

c) Prove using strong induction that every natural number n > 1 is divisible by a prime.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using induction, prove the following: i.) If a > -1 and n is a natural number,...
Using induction, prove the following: i.) If a > -1 and n is a natural number, then (1 + a)^n >= 1 + na ii.) If a and b are natural numbers, then a + b and ab are also natural
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by...
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by 8.
Use strong induction to prove that every natural number n ≥ 2 can be written as...
Use strong induction to prove that every natural number n ≥ 2 can be written as n = 2x + 3y, where x and y are integers greater than or equal to 0. Show the induction step and hypothesis along with any cases
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
How would you prove that for every natural number n, the product of any n odd...
How would you prove that for every natural number n, the product of any n odd numbers is odd, using mathematical induction?
Prove using induction that for any m,n is an element of natural number, if |{1,2,....,m}|= |{1,2,...,n}|...
Prove using induction that for any m,n is an element of natural number, if |{1,2,....,m}|= |{1,2,...,n}| then n=m
Using the method of induction proof, prove: If m and n are natural numbers, then so...
Using the method of induction proof, prove: If m and n are natural numbers, then so are n + m and nm.
Prove that 5n2 +15n is divisible by 10 for every n ≥ 2, by mathematical induction.
Prove that 5n2 +15n is divisible by 10 for every n ≥ 2, by mathematical induction.
prove by induction that n(n+1)(n+2) is divisible by 6 for n=1,2...
prove by induction that n(n+1)(n+2) is divisible by 6 for n=1,2...
Using field axioms and order axioms prove the following theorems (i) The sets R (real numbers),...
Using field axioms and order axioms prove the following theorems (i) The sets R (real numbers), P (positive numbers) and [1, infinity) are all inductive (ii) N (set of natural numbers) is inductive. In particular, 1 is a natural number (iii) If n is a natural number, then n >= 1 (iv) (The induction principle). If M is a subset of N (set of natural numbers) then M = N The following definitions are given: A subset S of R...