Question

Consider the relation on  {1,2,3,4}  defined by  r = { (a, b) : a > b...

Consider the relation on  {1,2,3,4}  defined by  r = { (a, b) : a > b }  and  s = { ( a, b ) : a − b = 1 }.  List all elements of  rs

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the relation R defined on the real line R, and defined as follows: x ∼...
Consider the relation R defined on the real line R, and defined as follows: x ∼ y if and only if the distance from the point x to the point y is less than 3. Study if this relation is reflexive, symmetric, and transitive. Which points are related to 2?
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Let R be the relation on Z defined by: For any a, b ∈ Z ,...
Let R be the relation on Z defined by: For any a, b ∈ Z , aRb if and only if 4 | (a + 3b). (a) Prove that R is an equivalence relation. (b) Prove that for all integers a and b, aRb if and only if a ≡ b (mod 4)
13. Let R be a relation on Z × Z be defined as (a, b) R...
13. Let R be a relation on Z × Z be defined as (a, b) R (c, d) if and only if a + d = b + c. a. Prove that R is an equivalence relation on Z × Z. b. Determine [(2, 3)].
A relation R is defined on Z by aRb if |a−b| ≤ 2. Which of the...
A relation R is defined on Z by aRb if |a−b| ≤ 2. Which of the properties reflexive, symmetric and transitive does the relation R possess? Explain why If R does not possess one of these properties,
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
Let R be the relation on the integers given by (a, b) ∈ R ⇐⇒ a...
Let R be the relation on the integers given by (a, b) ∈ R ⇐⇒ a − b is even. 1. Show that R is an equivalence relation 2. List teh equivalence classes for the relation Can anyone help?
4. Let A={(1,3),(2,4),(-4,-8),(3,9),(1,5),(3,6)}. The relation R is defined on A as follows: For all (a, b),(c,...
4. Let A={(1,3),(2,4),(-4,-8),(3,9),(1,5),(3,6)}. The relation R is defined on A as follows: For all (a, b),(c, d) ∈ A, (a, b) R (c, d) ⇔ ad = bc . R is an equivalence relation. Find the distinct equivalence classes of R.
Prove that the relation R on the set of all people, defined by xRy if x...
Prove that the relation R on the set of all people, defined by xRy if x and y have the same first name is an equivalence relation.
Let A = R x R, and let a relation S be defined as: “(x1 ,...
Let A = R x R, and let a relation S be defined as: “(x1 , y1 ) S (x2 , y2 ) ⬄ points (x1 , y1 ) and (x2 , y2 ) are 5 units apart.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you must give a counterexample