Question

Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...

Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y.

For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3.

(a) Is the relation reflexive? Prove or disprove.

(b) Is the relation symmetric? Prove or disprove.

(c) Is the relation transitive? Prove or disprove.

(d) Is it an equivalence relation? Explain.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the relation R defined on the real line R, and defined as follows: x ∼...
Consider the relation R defined on the real line R, and defined as follows: x ∼ y if and only if the distance from the point x to the point y is less than 3. Study if this relation is reflexive, symmetric, and transitive. Which points are related to 2?
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
Consider the following relation on the set Z: xRy ? x2 + y is even. For...
Consider the following relation on the set Z: xRy ? x2 + y is even. For each question below, if your answer is "yes", then prove it, if your answer is "no", then show a counterexample. (i) Is R reflexive? (ii) Is R symmetric? (iii) Is R antisymmetric? (iv) Is R transitive? (v) Is R an equivalence relation? If it is, then describe the equivalence classes of R. How many equivalence classes are there?
2. Let R be a relation on the set of integers ℤ defined by ? =...
2. Let R be a relation on the set of integers ℤ defined by ? = {(?, ?): a2 + ?2 ?? ? ??????? ??????} Is this relation reflexive? Symmetric? transitive?
a) Let R be an equivalence relation defined on some set A. Prove using induction that...
a) Let R be an equivalence relation defined on some set A. Prove using induction that R^n is also an equivalence relation. Note: In order to prove transitivity, you may use the fact that R is transitive if and only if R^n⊆R for ever positive integer ​n b) Prove or disprove that a partial order cannot have a cycle.
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
Consider the relation R= {(1,2),(2,2),(2,3),(3,1),(3,3)}. Is R transitive, not reflexive, symmetric or equivalence relation?
Consider the relation R= {(1,2),(2,2),(2,3),(3,1),(3,3)}. Is R transitive, not reflexive, symmetric or equivalence relation?
Construct a binary relation R on a nonempty set A satisfying the given condition, justify your...
Construct a binary relation R on a nonempty set A satisfying the given condition, justify your solution. (a) R is an equivalence relation. (b) R is transitive, but not symmetric. (c) R is neither symmetric nor reflexive nor transitive. (d) (5 points) R is antisymmetric and symmetric.
Suppose we define the relation R on the set of all people by the rule "a...
Suppose we define the relation R on the set of all people by the rule "a R b if and only if a is Facebook friends with b." Is this relation reflexive?  Is is symmetric?   Is it transitive?   Is it an equivalence relation? Briefly but clearly justify your answers.
A relation R is defined on Z by aRb if |a−b| ≤ 2. Which of the...
A relation R is defined on Z by aRb if |a−b| ≤ 2. Which of the properties reflexive, symmetric and transitive does the relation R possess? Explain why If R does not possess one of these properties,