Question

13. Let R be a relation on Z × Z be defined as (a, b) R...

13. Let R be a relation on Z × Z be defined as (a, b) R (c, d) if and only if a + d = b + c.

a. Prove that R is an equivalence relation on Z × Z.

b. Determine [(2, 3)].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be the relation on Z defined by: For any a, b ∈ Z ,...
Let R be the relation on Z defined by: For any a, b ∈ Z , aRb if and only if 4 | (a + 3b). (a) Prove that R is an equivalence relation. (b) Prove that for all integers a and b, aRb if and only if a ≡ b (mod 4)
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
a) Let R be an equivalence relation defined on some set A. Prove using induction that...
a) Let R be an equivalence relation defined on some set A. Prove using induction that R^n is also an equivalence relation. Note: In order to prove transitivity, you may use the fact that R is transitive if and only if R^n⊆R for ever positive integer ​n b) Prove or disprove that a partial order cannot have a cycle.
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Let ​R​ be an equivalence relation defined on some set ​A​. Prove using mathematical induction that...
Let ​R​ be an equivalence relation defined on some set ​A​. Prove using mathematical induction that ​R​^n​ is also an equivalence relation.
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z...
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z is the whole integers.) 1) Give two real numbers that are in the same equivalence class. 2) Give two real numbers that are not in the same equivalence class. 3) Prove that this relation is an equivalence relation.
Define a relation R on Z by aRb if and only if |a| = |b|. a)...
Define a relation R on Z by aRb if and only if |a| = |b|. a) Prove R is an equivalence relation b) Compute [0] and [n] for n in Z with n different than 0.
4. Let A={(1,3),(2,4),(-4,-8),(3,9),(1,5),(3,6)}. The relation R is defined on A as follows: For all (a, b),(c,...
4. Let A={(1,3),(2,4),(-4,-8),(3,9),(1,5),(3,6)}. The relation R is defined on A as follows: For all (a, b),(c, d) ∈ A, (a, b) R (c, d) ⇔ ad = bc . R is an equivalence relation. Find the distinct equivalence classes of R.
Let A=NxN and define a relation on A by (a,b)R(c,d) when a⋅b=c⋅d a ⋅ b =...
Let A=NxN and define a relation on A by (a,b)R(c,d) when a⋅b=c⋅d a ⋅ b = c ⋅ d . For example, (2,6)R(4,3) a) Show that R is an equivalence relation. b) Find an equivalence class with exactly one element. c) Prove that for every n ≥ 2 there is an equivalence class with exactly n elements.