Question

Consider the relation R defined on the real line R, and defined as follows: x ∼...

Consider the relation R defined on the real line R, and defined as follows: x ∼ y if and only if the distance from the point x to the point y is less than 3. Study if this relation is reflexive, symmetric, and transitive. Which points are related to 2?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Let A be the set of all real numbers, and let R be the relation "less...
Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
2. Let R be a relation on the set of integers ℤ defined by ? =...
2. Let R be a relation on the set of integers ℤ defined by ? = {(?, ?): a2 + ?2 ?? ? ??????? ??????} Is this relation reflexive? Symmetric? transitive?
A relation R is defined on Z by aRb if |a−b| ≤ 2. Which of the...
A relation R is defined on Z by aRb if |a−b| ≤ 2. Which of the properties reflexive, symmetric and transitive does the relation R possess? Explain why If R does not possess one of these properties,
Let A = R x R, and let a relation S be defined as: “(x1 ,...
Let A = R x R, and let a relation S be defined as: “(x1 , y1 ) S (x2 , y2 ) ⬄ points (x1 , y1 ) and (x2 , y2 ) are 5 units apart.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you must give a counterexample
Consider the relation R= {(1,2),(2,2),(2,3),(3,1),(3,3)}. Is R transitive, not reflexive, symmetric or equivalence relation?
Consider the relation R= {(1,2),(2,2),(2,3),(3,1),(3,3)}. Is R transitive, not reflexive, symmetric or equivalence relation?
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation R on Z where (?, ?) ∈ ? if ? = ? . The relation R on the set of all subsets of {1, 2, 3, 4} where SRT means S C T.
I had a discussion question that follows: What is wrong with the following argument? Note the...
I had a discussion question that follows: What is wrong with the following argument? Note the argument supposedly shows that any symmetric and transitive relation R on A must also be reflexive. Let R be a relation in A × A that is symmetric and transitive. Using symmetry, if (x,y) ∈ R then (y,x) ∈ R. Hence, both (x,y) and (y,x) are in R. Since (x,y) and (y,x) ∈ R, by transitivity, we have (x,x) ∈ R. Therefore, R is...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove R∪(S∩T) = (R∪S)∩(R∪T). 4.Consider the relation R={(x,y)∈R×R||x−y|≤1} on Z. Show that this relation is reflexive and symmetric but not transitive.