Question

Prove that for n>=1, (2n-1)^2-1 is divisible by 8.

Prove that for n>=1, (2n-1)^2-1 is divisible by 8.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. Prove that 2^(2n-1) + 3^(2n-1) is divisible by 5 for every natural number n.
. Prove that 2^(2n-1) + 3^(2n-1) is divisible by 5 for every natural number n.
Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n
Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in...
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in detail trying to learn.
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
(10) Use mathematical induction to prove that 7n – 2n  is divisible by 5 for all n...
(10) Use mathematical induction to prove that 7n – 2n  is divisible by 5 for all n >= 0.
Prove that if n ≥ 2, then n! < S(2n, n) < (2n)! S(2n,n) is referencing...
Prove that if n ≥ 2, then n! < S(2n, n) < (2n)! S(2n,n) is referencing to Stirling Numbers
Prove that 1+2+3+...+ n is divisible by n if n is odd. Always true that 1+2+3+...+...
Prove that 1+2+3+...+ n is divisible by n if n is odd. Always true that 1+2+3+...+ n is divisible by n+1 if n is even? Provide a proof.
prove by induction that n(n+1)(n+2) is divisible by 6 for n=1,2...
prove by induction that n(n+1)(n+2) is divisible by 6 for n=1,2...
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by...
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by 8.
Prove using the definition of O-notation that 2^(n+2)∈O(2^(2n)), but 2^(2n)∉O(2^(n+2)).
Prove using the definition of O-notation that 2^(n+2)∈O(2^(2n)), but 2^(2n)∉O(2^(n+2)).