Question

Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n


Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that for n>=1, (2n-1)^2-1 is divisible by 8.
Prove that for n>=1, (2n-1)^2-1 is divisible by 8.
. Prove that 2^(2n-1) + 3^(2n-1) is divisible by 5 for every natural number n.
. Prove that 2^(2n-1) + 3^(2n-1) is divisible by 5 for every natural number n.
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive...
Prove the following using induction: (a) For all natural numbers n>2, 2n>2n+1 (b) For all positive integersn, 1^3+3^3+5^3+···+(2^n−1)^3=n^2(2n^2−1) (c) For all positive natural numbers n,5/4·8^n+3^(3n−1) is divisible by 19
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 2 2n+1...
Use mathematical induction to prove that for each integer n ≥ 4, 5n ≥ 2 2n+1 + 100.
Use mathematical induction to prove 7^(n) − 1 is divisible by 6, for each integer n...
Use mathematical induction to prove 7^(n) − 1 is divisible by 6, for each integer n ≥ 1.
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in...
prove that 2^2n-1 is divisible by 3 for all natural numbers n .. please show in detail trying to learn.
Prove that 1/(2n) ≤ [1 · 3 · 5 · ··· · (2n − 1)]/(2 ·...
Prove that 1/(2n) ≤ [1 · 3 · 5 · ··· · (2n − 1)]/(2 · 4 · ··· · 2n) whenever n is a positive integer.
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive...
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive integer n.
Suppose for each positive integer n, an is an integer such that a1 = 1 and...
Suppose for each positive integer n, an is an integer such that a1 = 1 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a simple expression involving n that evaluates an for each positive integer n. Prove that your guess works for each n ≥ 1. Suppose for each positive integer n, an is an integer such that a1 = 7 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a...
Prove that 7^(n) − 1 is divisible by 6, for every positvie integer n
Prove that 7^(n) − 1 is divisible by 6, for every positvie integer n