Question

Prove that 1+2+3+...+ n is divisible by n if n is odd. Always true that 1+2+3+...+...

Prove that 1+2+3+...+ n is divisible by n if n is odd. Always true that 1+2+3+...+ n is divisible by n+1 if n is even? Provide a proof.

Homework Answers

Answer #1

1+2+3...+n=(n(n+1))/2

The proof follows by induction.If not able to do then comment down, I will provide the proof.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by...
Prove by induction that if n is an odd natural number, then 7n+1 is divisible by 8.
Statement: "For all integers n, if n2 is odd then n is odd" (1) prove the...
Statement: "For all integers n, if n2 is odd then n is odd" (1) prove the statement using Proof by Contradiction (2) prove the statement using Proof by Contraposition
Prove the following: If n is odd, use divisibility arguments to prove that n3 −n is...
Prove the following: If n is odd, use divisibility arguments to prove that n3 −n is divisible by 24. If the integer n is not divisible by 3, prove that n2 + 2 is divisible by 3.
1) Prove by induction that 1-1/2 + 1/3 -1/4 + ... - (-1)^n /n is always...
1) Prove by induction that 1-1/2 + 1/3 -1/4 + ... - (-1)^n /n is always positive 2) Prove by induction that for all positive integers n, (n^2+n+1) is odd.
Theorem: If m is an even number and n is an odd number, then m^2+n^2+1 is...
Theorem: If m is an even number and n is an odd number, then m^2+n^2+1 is even. Don’t prove it. In writing a proof by contraposition, what is your “Given” (assumption)? ___________________________ What is “To Prove”: _____________________________
Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd...
Prove by induction that k ^(2) − 1 is divisible by 8 for every positive odd integer k.
Prove that (n − 1)^3 + n^ 3 + (n + 1)^3 is divisible by 9...
Prove that (n − 1)^3 + n^ 3 + (n + 1)^3 is divisible by 9 for all natural numbers n.
Prove deductively that for any three consecutive odd integers, one of them is divisible by 3
Prove deductively that for any three consecutive odd integers, one of them is divisible by 3
. Prove that 2^(2n-1) + 3^(2n-1) is divisible by 5 for every natural number n.
. Prove that 2^(2n-1) + 3^(2n-1) is divisible by 5 for every natural number n.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT