Question

Prove there is only one positive real number L such that L2 = 2.

Prove there is only one positive real number L such that L2 = 2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that there is a positive real number x such that x2 - 2 = 0....
Prove that there is a positive real number x such that x2 - 2 = 0. What you'll need: Definition of a real number, definition of positive, definition of zero, and definition of Cauchy.
Suppose x is a positive real number such that x + (1/x) is an integer. Prove...
Suppose x is a positive real number such that x + (1/x) is an integer. Prove that x^2019 + (1/x^2019) is an integer.
Prove that if p is a positive rational number, then √p + √2 is irrational.
Prove that if p is a positive rational number, then √p + √2 is irrational.
1) Prove: Any real number is an accumulation point of the set of rational number. 2)...
1) Prove: Any real number is an accumulation point of the set of rational number. 2) prove: if A ⊆ B and A,B are bounded then supA ≤ supB . 3) Give counterexample: For two sequences {an} and {bn}, if {anbn} converges then both sequences are convergent.
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove...
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove this by directly proving the negation.Your proof must only use integers, inequalities and elementary logic. You may use that inequalities are preserved by adding a number on both sides,or by multiplying both sides by a positive number. You cannot use the square root function. Do not write a proof by contradiction.
Prove that for positive n ≥ 1 and d ≥ 2, the number of partitions of...
Prove that for positive n ≥ 1 and d ≥ 2, the number of partitions of n into parts not divisible by d is the number of partitions of n where no part is repeated more than d − 1 times
Let λ be a positive irrational real number. If n is a positive integer, choose by...
Let λ be a positive irrational real number. If n is a positive integer, choose by the Archimedean Property an integer k such that kλ ≤ n < (k + 1)λ. Let φ(n) = n − kλ. Prove that the set of all φ(n), n > 0, is dense in the interval [0, λ]. (Hint: Examine the proof of the density of the rationals in the reals.)
Consider Statements A and B below: A: A real number L is a limit of a...
Consider Statements A and B below: A: A real number L is a limit of a sequence if and only if for any ε− strip centered at L, infinitely many points on the graph of the sequence are inside the ε−strip. B: A real number L is a limit of a sequence if and only if for any ε− strip centered at L, only finitely many points on the graph of the sequence are outside the ε−strip. Evaluate the following...
) Prove or disprove the statements: (a) If x is a real number such that |x...
) Prove or disprove the statements: (a) If x is a real number such that |x + 2| + |x| ≤ 1, then |x ^2 + 2x − 1| ≤ 2. (b) If x is a real number such that |x + 2| + |x| ≤ 2, then |x^ 2 + 2x − 1| ≤ 2. (c) If x is a real number such that |x + 2| + |x| ≤ 3, then |x ^2 + 2x − 1 |...
Prove: If x is a sequence of real numbers that converges to L, then any subsequence...
Prove: If x is a sequence of real numbers that converges to L, then any subsequence of x converges to L.