Question

Suppose x is a positive real number such that x + (1/x) is an integer. Prove...

Suppose x is a positive real number such that x + (1/x) is an integer. Prove that x^2019 + (1/x^2019) is an integer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let x be a real number, and x > 1. Prove 1 < sqrt(x) and...
1. Let x be a real number, and x > 1. Prove 1 < sqrt(x) and sqrt(x) < x. 2. If x is an integer divisible by 4, and y is an integer that is not, prove x + y is not divisible by 4.
Prove that if x+ \frac{1}{x} is integer then x^n+ \frac{1}{x^n} is also integer for any positive...
Prove that if x+ \frac{1}{x} is integer then x^n+ \frac{1}{x^n} is also integer for any positive integer n. KEY NOTE: PROVE BY INDUCTION
Prove that there is a positive real number x such that x2 - 2 = 0....
Prove that there is a positive real number x such that x2 - 2 = 0. What you'll need: Definition of a real number, definition of positive, definition of zero, and definition of Cauchy.
Let λ be a positive irrational real number. If n is a positive integer, choose by...
Let λ be a positive irrational real number. If n is a positive integer, choose by the Archimedean Property an integer k such that kλ ≤ n < (k + 1)λ. Let φ(n) = n − kλ. Prove that the set of all φ(n), n > 0, is dense in the interval [0, λ]. (Hint: Examine the proof of the density of the rationals in the reals.)
Suppose for each positive integer n, an is an integer such that a1 = 1 and...
Suppose for each positive integer n, an is an integer such that a1 = 1 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a simple expression involving n that evaluates an for each positive integer n. Prove that your guess works for each n ≥ 1. Suppose for each positive integer n, an is an integer such that a1 = 7 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a...
Suppose p is a positive prime integer and k is an integer satisfying 1 ≤ k...
Suppose p is a positive prime integer and k is an integer satisfying 1 ≤ k ≤ p − 1. Prove that p divides p!/ (k! (p-k)!).
) Prove or disprove the statements: (a) If x is a real number such that |x...
) Prove or disprove the statements: (a) If x is a real number such that |x + 2| + |x| ≤ 1, then |x ^2 + 2x − 1| ≤ 2. (b) If x is a real number such that |x + 2| + |x| ≤ 2, then |x^ 2 + 2x − 1| ≤ 2. (c) If x is a real number such that |x + 2| + |x| ≤ 3, then |x ^2 + 2x − 1 |...
Without using induction, prove that for x is an odd, positive integer, 3x ≡−1 (mod 4)....
Without using induction, prove that for x is an odd, positive integer, 3x ≡−1 (mod 4). I'm not sure how to approach the problem. I thought to assume that x=2a+1 and then show that 3^x +1 is divisible by 4 and thus congruent to 3x=-1(mod4) but I'm stuck.
Prove that if n is a positive integer greater than 1, then n! + 1 is...
Prove that if n is a positive integer greater than 1, then n! + 1 is odd Prove that if a, b, c are integers such that a2 + b2 = c2, then at least one of a, b, or c is even.
Prove the following: For any positive real numbers x and y, x+y ≥ √(xy)
Prove the following: For any positive real numbers x and y, x+y ≥ √(xy)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT