Question

Prove: If x is a sequence of real numbers that converges to L, then any subsequence...

Prove: If x is a sequence of real numbers that converges to L, then any subsequence of x converges to L.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if a sequence converges to a limit x then very subsequence converges to x.
Prove that if a sequence converges to a limit x then very subsequence converges to x.
Suppose (an) is an increasing sequence of real numbers. Show, if (an) has a bounded subsequence,...
Suppose (an) is an increasing sequence of real numbers. Show, if (an) has a bounded subsequence, then (an) converges; and (an) diverges to infinity if and only if (an) has an unbounded subsequence.
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn}...
Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn} is a sequence of real numbers that converges. Prove that {xn+bn} converges to +infinity.
Prove that X is totally bounded if every sequence of X has a convergent subsequence. Please...
Prove that X is totally bounded if every sequence of X has a convergent subsequence. Please directly prove it without using any theorem on totally boundedness.
Show that sequence {sn} converges if it is monotone and has a convergent subsequence.
Show that sequence {sn} converges if it is monotone and has a convergent subsequence.
Give a sequence of rational numbers that converges to √5 (i.e. converges to L where L^2=5)....
Give a sequence of rational numbers that converges to √5 (i.e. converges to L where L^2=5). No proof needed.
Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show, if...
Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show, if σ : N → N is one-one, then the sequence (bn = aσ(n))n also converges to L.
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only...
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only if every infinite subset of E has a point of accumulation that belongs to E. Use Theorem 4.21: [Bolzano-Weierstrass Property] A set of real numbers is closed and bounded if and only if every sequence of points chosen from the set has a subsequence that converges to a point that belongs to E. Must use Theorem 4.21 to prove Corollary 4.22 and there should...
Prove that if a sequence is a Cauchy sequence, then it converges.
Prove that if a sequence is a Cauchy sequence, then it converges.
Prove that every bounded sequence has a convergent subsequence.
Prove that every bounded sequence has a convergent subsequence.