Question

Let V and W be two finite dimensional vector spaces over R such that dim(V )...

Let V and W be two finite dimensional vector spaces over R such that dim(V ) ≠dim(W ) and T : V → W be a linear transformation. Show that:
(a) If T is surjective, then T is NOT injective.
(b) If T is injective, then T is NOT surjective.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
1. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. A) If m = n and ker(φ) = (0), what is im(φ)? B) If ker(φ) = V, what is im(φ)? C) If φ is surjective, what is im(φ)? D) If φ is surjective, what is dim(ker(φ))? E) If m = n and φ is surjective, what is ker(φ)? F)...
2. For finite-dimensional vector spaces V and W over field F, let φ : V →...
2. For finite-dimensional vector spaces V and W over field F, let φ : V → W be a linear transformation. A) If φ : R^83 → M(7 × 9, R) is surjective, what is dim(ker(φ))? B) If φ : P24(R) → P56(R) is injective, what is dim(im(φ))? C) If φ : M(40 × 3, R) → R^71 has dim(im(φ)) = 67, what is dim(ker(φ))? D) If φ : R^92 → P105(R) has dim(ker(φ)) = 8, what is dim(im(φ))?
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. Fill in the six blanks to give bounds on the sizes of the dimension of ker(φ) and the dimension of im(φ). 3. Let V and W be finite-dimensional vector spaces over field F with dim(V ) = n and dim(W) = m, and let φ : V → W...
Let V and W be finite-dimensional vector spaces over F, and let φ : V →...
Let V and W be finite-dimensional vector spaces over F, and let φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V ) = n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn}, for some vectors vk+1, . . . , vn ∈ V . Prove that...
) Let L : V → W be a linear transformation between two finite dimensional vector...
) Let L : V → W be a linear transformation between two finite dimensional vector spaces. Assume that dim(V) = dim(W). Prove that the following statements are equivalent. a) L is one-to-one. b) L is onto. please help asap. my final is tomorrow morning. Thanks!!!!
Let L : V → W be a linear transformation between two vector spaces. Show that...
Let L : V → W be a linear transformation between two vector spaces. Show that dim(ker(L)) + dim(Im(L)) = dim(V)
Suppose that V is a finite dimensional inner product space over C and dim V =...
Suppose that V is a finite dimensional inner product space over C and dim V = n, let T be a normal linear transformation of V If S is a linear transformation of V and T has n distinc eigenvalues such that ST=TS. Prove S is normal.
Let V and W be vector spaces and let T:V→W be a linear transformation. We say...
Let V and W be vector spaces and let T:V→W be a linear transformation. We say a linear transformation S:W→V is a left inverse of T if ST=Iv, where ?v denotes the identity transformation on V. We say a linear transformation S:W→V is a right inverse of ? if ??=?w, where ?w denotes the identity transformation on W. Finally, we say a linear transformation S:W→V is an inverse of ? if it is both a left and right inverse of...
Suppose V and W are two vector spaces. We can make the set V × W...
Suppose V and W are two vector spaces. We can make the set V × W = {(α, β)|α ∈ V,β ∈ W} into a vector space as follows: (α1,β1)+(α2,β2)=(α1 + α2,β1 + β2) c(α1,β1)=(cα1, cβ1) You can assume the axioms of a vector space hold for V × W (A) If V and W are finite dimensional, what is the dimension of V × W? Prove your answer. Now suppose W1 and W2 are two subspaces of V ....
(3) Let V be a finite dimensional vector space, and let T: V® V be a...
(3) Let V be a finite dimensional vector space, and let T: V® V be a linear transformation such that rk(T) = rk(T2). a) Show that ker(T) = ker(T2). b) Show that 0 is the only vector that lies in both the null space of T, and the range space of T
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT