Question

2. For ﬁnite-dimensional vector spaces V and W over ﬁeld F, let φ : V → W be a linear transformation.

A) If φ : R^83 → M(7 × 9, R) is surjective, what is dim(ker(φ))?

B) If φ : P24(R) → P56(R) is injective, what is dim(im(φ))?

C) If φ : M(40 × 3, R) → R^71 has dim(im(φ)) = 67, what is dim(ker(φ))?

D) If φ : R^92 → P105(R) has dim(ker(φ)) = 8, what is dim(im(φ))?

Answer #1

1. Let V and W be ﬁnite-dimensional vector spaces over ﬁeld F
with dim(V) = n and dim(W) = m, and
let φ : V → W be a linear transformation.
A) If m = n and ker(φ) = (0), what is im(φ)?
B) If ker(φ) = V, what is im(φ)?
C) If φ is surjective, what is im(φ)?
D) If φ is surjective, what is dim(ker(φ))?
E) If m = n and φ is surjective, what is ker(φ)?
F)...

3. Let V and W be ﬁnite-dimensional vector spaces over ﬁeld F
with dim(V) = n and dim(W) = m, and
let φ : V → W be a linear transformation. Fill in the six blanks
to give bounds on the sizes of the
dimension of ker(φ) and the dimension of im(φ).
3. Let V and W be ﬁnite-dimensional vector spaces over ﬁeld F
with dim(V ) = n and dim(W) = m, and
let φ : V → W...

Let V and W be finite-dimensional vector spaces over F, and let
φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V )
= n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can
be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn},
for some vectors vk+1, . . . , vn ∈ V . Prove that...

Let L : V → W be a linear transformation between two vector
spaces. Show that dim(ker(L)) + dim(Im(L)) = dim(V)

) Let L : V → W be a linear transformation between two finite
dimensional vector spaces. Assume that dim(V) = dim(W). Prove that
the following statements are equivalent. a) L is one-to-one. b) L
is onto.
please help asap. my final is tomorrow morning. Thanks!!!!

Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T :
V → W be linear map. The kernel of T, denoted ker(T), is defined to
be the set ker(T) = {v ∈ V : T(v) = 0}. Then ker(T) is a linear
subspace of V .
Let W be a closed subspace of V with W not equal to V . Prove
that W is nowhere dense in V .

Let V and W be vector spaces and let T:V→W be a linear
transformation. We say a linear transformation S:W→V is a left
inverse of T if ST=Iv, where ?v denotes the identity transformation
on V. We say a linear transformation S:W→V is a right inverse of ?
if ??=?w, where ?w denotes the identity transformation on W.
Finally, we say a linear transformation S:W→V is an inverse of ? if
it is both a left and right inverse of...

Suppose V and W are two vector spaces. We can make the set V × W
= {(α, β)|α ∈ V,β ∈ W} into a vector space as follows:
(α1,β1)+(α2,β2)=(α1 + α2,β1 + β2)
c(α1,β1)=(cα1, cβ1)
You can assume the axioms of a vector space hold for V × W
(A) If V and W are finite dimensional, what is the dimension of
V × W? Prove your answer.
Now suppose W1 and W2 are two subspaces of V ....

(3) Let V be a finite dimensional vector space, and let T: V® V
be a linear transformation such that rk(T) = rk(T2).
a) Show that ker(T) = ker(T2).
b) Show that 0 is the only vector that lies in
both the null space of T, and the range space of T

Let V be an n-dimensional vector space and W a vector
space that is isomorphic to V. Prove that W is also
n-dimensional. Give a clear, detailed, step-by-step
argument using the definitions of "dimension" and "isomorphic"
the Definiton of isomorphic: Let V be an
n-dimensional vector space and W a vector space that is
isomorphic to V. Prove that W is also n-dimensional. Give
a clear, detailed, step-by-step argument using the definitions of
"dimension" and "isomorphic"
The Definition of dimenion: the...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 16 minutes ago

asked 22 minutes ago

asked 31 minutes ago

asked 38 minutes ago

asked 38 minutes ago

asked 47 minutes ago

asked 47 minutes ago

asked 47 minutes ago

asked 52 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago