Question

1. Let V and W be ﬁnite-dimensional vector spaces over ﬁeld F with dim(V) = n and dim(W) = m, and

let φ : V → W be a linear transformation.

A) If m = n and ker(φ) = (0), what is im(φ)?

B) If ker(φ) = V, what is im(φ)?

C) If φ is surjective, what is im(φ)?

D) If φ is surjective, what is dim(ker(φ))?

E) If m = n and φ is surjective, what is ker(φ)?

F) If m = n and im(φ) = W, what is ker(φ)?

G) If im(φ) = {0}, what is ker(φ)?

H) If φ is injective, what is ker(φ)?

I) If φ is injective, what is dim(im(φ))?

J) If m = n and φ is injective, what is im(φ)?

Answer #1

Let V and W be finite-dimensional vector spaces over F, and let
φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V )
= n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can
be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn},
for some vectors vk+1, . . . , vn ∈ V . Prove that...

Let L : V → W be a linear transformation between two vector
spaces. Show that dim(ker(L)) + dim(Im(L)) = dim(V)

Suppose V is a vector space over F, dim V = n, let T be a linear
transformation on V.
1. If T has an irreducible characterisctic polynomial over F,
prove that {0} and V are the only T-invariant subspaces of V.
2. If the characteristic polynomial of T = g(t) h(t) for some
polynomials g(t) and h(t) of degree < n , prove that V has a
T-invariant subspace W such that 0 < dim W < n

Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T :
V → W be linear map. The kernel of T, denoted ker(T), is defined to
be the set ker(T) = {v ∈ V : T(v) = 0}. Then ker(T) is a linear
subspace of V .
Let W be a closed subspace of V with W not equal to V . Prove
that W is nowhere dense in V .

) Let L : V → W be a linear transformation between two finite
dimensional vector spaces. Assume that dim(V) = dim(W). Prove that
the following statements are equivalent. a) L is one-to-one. b) L
is onto.
please help asap. my final is tomorrow morning. Thanks!!!!

Suppose V and W are two vector spaces. We can make the set V × W
= {(α, β)|α ∈ V,β ∈ W} into a vector space as follows:
(α1,β1)+(α2,β2)=(α1 + α2,β1 + β2)
c(α1,β1)=(cα1, cβ1)
You can assume the axioms of a vector space hold for V × W
(A) If V and W are finite dimensional, what is the dimension of
V × W? Prove your answer.
Now suppose W1 and W2 are two subspaces of V ....

Let V be an n-dimensional vector space and W a vector
space that is isomorphic to V. Prove that W is also
n-dimensional. Give a clear, detailed, step-by-step
argument using the definitions of "dimension" and "isomorphic"
the Definiton of isomorphic: Let V be an
n-dimensional vector space and W a vector space that is
isomorphic to V. Prove that W is also n-dimensional. Give
a clear, detailed, step-by-step argument using the definitions of
"dimension" and "isomorphic"
The Definition of dimenion: the...

Let V and W be vector spaces and let T:V→W be a linear
transformation. We say a linear transformation S:W→V is a left
inverse of T if ST=Iv, where ?v denotes the identity transformation
on V. We say a linear transformation S:W→V is a right inverse of ?
if ??=?w, where ?w denotes the identity transformation on W.
Finally, we say a linear transformation S:W→V is an inverse of ? if
it is both a left and right inverse of...

Let V be an n-dimensional vector space. Let W and W2 be unequal
subspaces of V, each of dimension n - 1. Prove that V =W1 + W2 and
dim(Win W2) = n - 2.

(3) Let V be a finite dimensional vector space, and let T: V® V
be a linear transformation such that rk(T) = rk(T2).
a) Show that ker(T) = ker(T2).
b) Show that 0 is the only vector that lies in
both the null space of T, and the range space of T

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 17 minutes ago

asked 18 minutes ago

asked 21 minutes ago

asked 35 minutes ago

asked 35 minutes ago

asked 35 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago