Question

Let V and W be finite-dimensional vector spaces over F, and let φ : V →...

Let V and W be finite-dimensional vector spaces over F, and let φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V ) = n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn}, for some vectors vk+1, . . . , vn ∈ V . Prove that {φ(vk+1), . . . , φ(vn)} is a linearly independent set without using the Rank Nullity Theorem.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
3. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. Fill in the six blanks to give bounds on the sizes of the dimension of ker(φ) and the dimension of im(φ). 3. Let V and W be finite-dimensional vector spaces over field F with dim(V ) = n and dim(W) = m, and let φ : V → W...
2. For finite-dimensional vector spaces V and W over field F, let φ : V →...
2. For finite-dimensional vector spaces V and W over field F, let φ : V → W be a linear transformation. A) If φ : R^83 → M(7 × 9, R) is surjective, what is dim(ker(φ))? B) If φ : P24(R) → P56(R) is injective, what is dim(im(φ))? C) If φ : M(40 × 3, R) → R^71 has dim(im(φ)) = 67, what is dim(ker(φ))? D) If φ : R^92 → P105(R) has dim(ker(φ)) = 8, what is dim(im(φ))?
1. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n...
1. Let V and W be finite-dimensional vector spaces over field F with dim(V) = n and dim(W) = m, and let φ : V → W be a linear transformation. A) If m = n and ker(φ) = (0), what is im(φ)? B) If ker(φ) = V, what is im(φ)? C) If φ is surjective, what is im(φ)? D) If φ is surjective, what is dim(ker(φ))? E) If m = n and φ is surjective, what is ker(φ)? F)...
5. Prove or disprove the following statements. (a) Let L : V → W be a...
5. Prove or disprove the following statements. (a) Let L : V → W be a linear mapping. If {L(~v1), . . . , L( ~vn)} is a basis for W, then {~v1, . . . , ~vn} is a basis for V. (b) If V and W are both n-dimensional vector spaces and L : V → W is a linear mapping, then nullity(L) = 0. (c) If V is an n-dimensional vector space and L : V →...
) Let L : V → W be a linear transformation between two finite dimensional vector...
) Let L : V → W be a linear transformation between two finite dimensional vector spaces. Assume that dim(V) = dim(W). Prove that the following statements are equivalent. a) L is one-to-one. b) L is onto. please help asap. my final is tomorrow morning. Thanks!!!!
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" the Definiton of isomorphic:  Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" The Definition of dimenion: the...
Let L : V → W be a linear transformation between two vector spaces. Show that...
Let L : V → W be a linear transformation between two vector spaces. Show that dim(ker(L)) + dim(Im(L)) = dim(V)
Suppose V and W are two vector spaces. We can make the set V × W...
Suppose V and W are two vector spaces. We can make the set V × W = {(α, β)|α ∈ V,β ∈ W} into a vector space as follows: (α1,β1)+(α2,β2)=(α1 + α2,β1 + β2) c(α1,β1)=(cα1, cβ1) You can assume the axioms of a vector space hold for V × W (A) If V and W are finite dimensional, what is the dimension of V × W? Prove your answer. Now suppose W1 and W2 are two subspaces of V ....
Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T...
Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T : V → W be linear map. The kernel of T, denoted ker(T), is defined to be the set ker(T) = {v ∈ V : T(v) = 0}. Then ker(T) is a linear subspace of V . Let W be a closed subspace of V with W not equal to V . Prove that W is nowhere dense in V .