Question

Prove if ab ≡ cd(mod m) and fg ≡ hj(mod m) then (ab + fg) ≡...

Prove if ab ≡ cd(mod m) and fg ≡ hj(mod m) then (ab + fg) ≡ (cd + hj)(mod m)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove If segment AB = segment CD, then {A,B}={C,D}.
Prove If segment AB = segment CD, then {A,B}={C,D}.
Use pumping lemma to prove that L3a = {ab^m ab^m a| m>0} is non-regular
Use pumping lemma to prove that L3a = {ab^m ab^m a| m>0} is non-regular
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n). (b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).
Consider a quadrilateral ABCD such that ∠BAD and ∠ADC are perpendicular, the rays AB and CD...
Consider a quadrilateral ABCD such that ∠BAD and ∠ADC are perpendicular, the rays AB and CD are on the same side of the line AD, and AB ≅ CD. Prove the following claims on E2, H2, and S2. ∠ABC ≅ ∠DCB. the perpendicular bisector of AD is also the perpendicular bisector of BC. Hint: Look for symmetries.
Prove that if ? ≡ ? (mod n) and ? ≡ ? (mod n), then ?...
Prove that if ? ≡ ? (mod n) and ? ≡ ? (mod n), then ? ≡ ? (mod n). This proves that congruence mod n is transitive. and : Prove that if ? ≡ ? (mod n) and ? ≡ ? (mod n), then a) ? + ? ≡ ? + ? (mod n) b) ?? ≡ ?? (mod n)
Consider a quadrilateral ABCD such that ∠BAD and ∠ADC are perpendicular, the rays AB and CD...
Consider a quadrilateral ABCD such that ∠BAD and ∠ADC are perpendicular, the rays AB and CD are on the same side of the line AD, and AB ≅ CD. Quadrilaterals with these properties are called Khayyam quadrilaterals Prove the following claims on E2, H2, and S2. ∠ABC ≅ ∠DCB. the perpendicular bisector of AD is also the perpendicular bisector of BC. Hint: Look for symmetries.
A parallelogram ABCD is called a rhombus if AB = BC = CD = DA. Suppose...
A parallelogram ABCD is called a rhombus if AB = BC = CD = DA. Suppose ABCD is a rhombus. Prove that AC is perpendicular to BD.
Let O ∈ (AB) and C /∈ AB. Prove that there is a point D on...
Let O ∈ (AB) and C /∈ AB. Prove that there is a point D on the same side of AB as C such that m(∠DOA) = m(∠COB).
Show that addition of line segments is commutative up to congruence: Given segments AB, CD, then...
Show that addition of line segments is commutative up to congruence: Given segments AB, CD, then AB + CD =~ CD + AB.
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT