Question

(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...

(§2.1) Let a,b,p,n ∈Z with n > 1.

(a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n).

(b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
. Let f : Z → N be function. a. Prove or disprove: f is not...
. Let f : Z → N be function. a. Prove or disprove: f is not strictly increasing. b. Prove or disprove: f is not strictly decreasing.
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and...
1. Prove that {2k+1: k ∈ Z}={2k+3 : k ∈ Z} 2. Prove/disprove: if p and q are prime numbers and p < q, then 2p + q^2 is odd (Hint: all prime numbers greater than 2 are odd)
Let a be prime and b be a positive integer. Prove/disprove, that if a divides b^2...
Let a be prime and b be a positive integer. Prove/disprove, that if a divides b^2 then a divides b.
Prove or disprove: If the columns of B(n×p) ? R are linearly independent as well as...
Prove or disprove: If the columns of B(n×p) ? R are linearly independent as well as those of A, then so are the columns of AB (for A(m×n) ? R ).
Let Z be the integers. (a) Let C1 = {(a, a) | a ∈ Z}. Prove...
Let Z be the integers. (a) Let C1 = {(a, a) | a ∈ Z}. Prove that C1 is a subgroup of Z × Z. (b) Let n ≥ 2 be an integer, and let Cn = {(a, b) | a ≡ b( mod n)}. Prove that Cn is a subgroup of Z × Z. (c) Prove that every proper subgroup of Z × Z that contains C1 has the form Cn for some positive integer n.
Let p be be prime and p ≡ 1 (mod 4|a|). Prove that a is a...
Let p be be prime and p ≡ 1 (mod 4|a|). Prove that a is a quadratic residue mod p.
Prove: Let n ∈ N, a ∈ Z, and gcd(a,n) = 1. For i,j ∈ N,...
Prove: Let n ∈ N, a ∈ Z, and gcd(a,n) = 1. For i,j ∈ N, aj ≡ ai (mod n) if and only if j ≡ i (mod ordn(a)). Where ordn(a) represents the order of a modulo n. Be sure to prove both the forward and backward direction.
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime:...
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime: there exist infinitely many positive integers n such that p | f(n)} is infinite.
Assume a, b ∈ Z and p is prime. Using B´ezout’s identity, prove that if p...
Assume a, b ∈ Z and p is prime. Using B´ezout’s identity, prove that if p | ab, then p | a or p | b.
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2...
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2 (mod p). (You will need Wilson’s theorem, (p−1)! ≡−1 (mod p).) This gives another proof that if p ≡ 1 (mod 4), then x^2 ≡ −1 (mod p) has a solution.