Question

Given two topological spaces with X={d,e,f} and Y = {d, 2,3,8}. Explain why they are not...

Given two topological spaces with X={d,e,f} and Y = {d, 2,3,8}. Explain why they are not homeomorphic.

Homework Answers

Answer #1

A function f from topological space X to other topological space Y is called homeomorphisms if f is continuous, one one, onto with continuous inverse.

Here X={d,e,f} and Y={d,2,3,8}.

X has 3 elements and Y has 4 elements.

Therefore, there does not exist any map between X and Y which is both one one and onto.

Because for a function to be one one and onto, both the spaces should have same cardinality.

Therefore, topological spaces with X and Y are not homeomorphic.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If X, Y are topological spaces and f : X → Y we call the graph...
If X, Y are topological spaces and f : X → Y we call the graph of f the set Γf = {(x, f(x)); x ∈ X} which is a subset of X × Y. If X and Y are metric spaces and f is a continuous function prove that the graph of f is a closed set.
Suppose that f : X  → Y and g: X  → Y are continuous maps between topological spaces...
Suppose that f : X  → Y and g: X  → Y are continuous maps between topological spaces and that Y is Hausdorff. Show that the set A = {x ∈ X : f(x) = g(x)} is closed in X.
If X and Y are discrete topological spaces, how do I prove X x Y is...
If X and Y are discrete topological spaces, how do I prove X x Y is also discrete? How would I prove the converse is true, could I ? Very interested. Please explain. Like to please break down into steps that would make sense. Not sure if I have to use facts of product topology and discrete topology and how to use them.
Prove that the product of two connected topological spaces is connected.
Prove that the product of two connected topological spaces is connected.
Let (X, dX) and (Y, dY ) be metric spaces and let f : X →...
Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be a continuous bijection. Prove that if (X, dX) is compact, then f is a homeomorphism
Given the function f(x, y) = e^(x)*sin(y) + e^(y)*sin(x) approximate f(0.1, -0.2) using P(0, 0).
Given the function f(x, y) = e^(x)*sin(y) + e^(y)*sin(x) approximate f(0.1, -0.2) using P(0, 0).
Let X and Y be metric spaces. Let f be a continuous function from X onto...
Let X and Y be metric spaces. Let f be a continuous function from X onto Y, that is the image of f is equal to Y. Show that if X is compact, then Y is compact
Let X, Y be metric spaces, with Y complete. Let S ⊂ X and let f...
Let X, Y be metric spaces, with Y complete. Let S ⊂ X and let f : S → Y be uniformly continuous. (a) Suppose p ∈ S closure and (pn) is a sequence in S with pn → p. Show that (f(pn)) converges in y to some point yp.
suppose X ,Y are T2 spaces ...prove that X x Y are t2 spaces
suppose X ,Y are T2 spaces ...prove that X x Y are t2 spaces
a. Is F(x,y,z)= <(e^z)siny,(e^z)cosx,(e^x)siny> a conservative vector field? Justify. b. Is F incompressible? Explain. Is it...
a. Is F(x,y,z)= <(e^z)siny,(e^z)cosx,(e^x)siny> a conservative vector field? Justify. b. Is F incompressible? Explain. Is it irrotational? Explain. c. The vector field F(x,y,z)= < 6xy^2+e^z, 6yx^2 +zcos(y),sin(y)xe^z > is conservative. Find the potential function f. That is, the function f such that ▽f=F. Use a process.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT