Question

Suppose that f : X  → Y and g: X  → Y are continuous maps between topological spaces...

Suppose that f : X  → Y and g: X  → Y are continuous maps between topological spaces and that Y is Hausdorff. Show that the set A = {x ∈ X : f(x) = g(x)} is closed in X.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If X, Y are topological spaces and f : X → Y we call the graph...
If X, Y are topological spaces and f : X → Y we call the graph of f the set Γf = {(x, f(x)); x ∈ X} which is a subset of X × Y. If X and Y are metric spaces and f is a continuous function prove that the graph of f is a closed set.
Let f be a continuous from a topological space X to the reals. Let a be...
Let f be a continuous from a topological space X to the reals. Let a be in the reals and let A = {x in X : f(x)=a} Show that A is closed inX.
Let X and Y be metric spaces. Let f be a continuous function from X onto...
Let X and Y be metric spaces. Let f be a continuous function from X onto Y, that is the image of f is equal to Y. Show that if X is compact, then Y is compact
8.4: Let f : X → Y and g : Y→ Z be maps. Prove that...
8.4: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is surjective then g is surjective. 8.5: Let f : X → Y and g : Y→ Z be bijections. Prove that if composition g o f is bijective then f is bijective. 8.6: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is bijective then f is...
Let X, Y be metric spaces, with Y complete. Let S ⊂ X and let f...
Let X, Y be metric spaces, with Y complete. Let S ⊂ X and let f : S → Y be uniformly continuous. (a) Suppose p ∈ S closure and (pn) is a sequence in S with pn → p. Show that (f(pn)) converges in y to some point yp.
Let f and g be continuous functions on the reals and let S={x in R |...
Let f and g be continuous functions on the reals and let S={x in R | f(x)>=g(x)} . Show that S is a closed set.
Please prove the following theorem: Suppose (X,p) and (Y,b) are metric spaces, X is compact, and...
Please prove the following theorem: Suppose (X,p) and (Y,b) are metric spaces, X is compact, and f:X→Y is continuous. Then f is uniformly continuous.
If X and Y are discrete topological spaces, how do I prove X x Y is...
If X and Y are discrete topological spaces, how do I prove X x Y is also discrete? How would I prove the converse is true, could I ? Very interested. Please explain. Like to please break down into steps that would make sense. Not sure if I have to use facts of product topology and discrete topology and how to use them.
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X...
1.- Prove the intermediate value theorem: let (X, τ) be a connected topological space, f: X - → Y a continuous transformation and x1, x2 ∈ X with a1 = f (x1), a2 = f (x2) ( a1 different a2). Then for all c∈ (a1, a2) there is x∈ such that f (x) = c. 2.- Let f: X - → Y be a continuous and suprajective transformation. Show that if X is connected, then Y too.
Let (X, dX) and (Y, dY ) be metric spaces and let f : X →...
Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be a continuous bijection. Prove that if (X, dX) is compact, then f is a homeomorphism
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT