Question

(a)Suppose A ∈ M3(R) is nonzero, but A · A = 0. What are the possibilities...

(a)Suppose A ∈ M3(R) is nonzero, but A · A = 0. What are the possibilities for the dimension of the kernel of A?
(b)Let V be a finite dimensional vector space, and U ⊂ V a subspace.Show that there exists a linear map T:V→V with Im(T) = U.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let T: V -> V be a linear map such that T2 - I = 0...
Let T: V -> V be a linear map such that T2 - I = 0 where I is the identity map on V. a) Prove that Im(T-I) is a subset of Ker(T+I) and Im(T+I) is a subset of Ker(T-I). b) Prove that V is the direct sum of Ker(T-I) and Ker(T+I). c) Suppose that V is finite dimensional. True or false there exists a basis B of V such that [T]B is a diagonal matrix. Justify your answer.
5. Let V be a finite-dimension vector space and T : V → V be linear....
5. Let V be a finite-dimension vector space and T : V → V be linear. Show that V = im(T) + ker(T) if and only if im(T) ∩ ker(T) = {0}.
Suppose that V is finite-dimensional, U ⊂ V is a subspace, and S : U →...
Suppose that V is finite-dimensional, U ⊂ V is a subspace, and S : U → W is a linear map. Show that there exists a linear map T : V → W such that T u = Su for every u ∈ U.
Let V be a finite-dimensional vector space and let T be a linear map in L(V,...
Let V be a finite-dimensional vector space and let T be a linear map in L(V, V ). Suppose that dim(range(T 2 )) = dim(range(T)). Prove that the range and null space of T have only the zero vector in common
Let U and W be subspaces of a finite dimensional vector space V such that V=U⊕W....
Let U and W be subspaces of a finite dimensional vector space V such that V=U⊕W. For any x∈V write x=u+w where u∈U and w∈W. Let R:U→U and S:W→W be linear transformations and define T:V→V by Tx=Ru+Sw . Show that detT=detRdetS .
Let V be a finite dimensional space over R, with a positive definite scalar product. Let...
Let V be a finite dimensional space over R, with a positive definite scalar product. Let P : V → V be a linear map such that P P = P . Assume that P T P = P P T . Show that P = P T .
1. Suppose that ? is a finite dimensional vector space over R. Show that if ???(?...
1. Suppose that ? is a finite dimensional vector space over R. Show that if ???(? ) is odd, then every ? ∈ L(? ) has an eigenvalue. (Hint: use induction). (please provide a detailed proof) 2. Suppose that ? is a finite dimensional vector space over R and ? ∈ L(? ) has no eigenvalues. Prove that every ? -invariant subspace of ? has even dimension.
Suppose V and W are two vector spaces. We can make the set V × W...
Suppose V and W are two vector spaces. We can make the set V × W = {(α, β)|α ∈ V,β ∈ W} into a vector space as follows: (α1,β1)+(α2,β2)=(α1 + α2,β1 + β2) c(α1,β1)=(cα1, cβ1) You can assume the axioms of a vector space hold for V × W (A) If V and W are finite dimensional, what is the dimension of V × W? Prove your answer. Now suppose W1 and W2 are two subspaces of V ....
(3) Let V be a finite dimensional vector space, and let T: V® V be a...
(3) Let V be a finite dimensional vector space, and let T: V® V be a linear transformation such that rk(T) = rk(T2). a) Show that ker(T) = ker(T2). b) Show that 0 is the only vector that lies in both the null space of T, and the range space of T
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose...
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose that T is a linear transformation from V to itself and T(u) = u + v, T(v) = u, T(w) = v. 1. Find the matrix of T relative to the ordered basis B. 2. A typical element of V looks like au + bv + cw, where a, b and c are scalars. Find T(au + bv + cw). Now that you know...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT