Question

Let U and W be subspaces of a finite dimensional vector space V such that V=U⊕W....

Let U and W be subspaces of a finite dimensional vector space V such that V=U⊕W. For any x∈V write x=u+w where u∈U and w∈W. Let R:U→U and S:W→W be linear transformations and define T:V→V by Tx=Ru+Sw

.

Show that detT=detRdetS

.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S, U, and W be subspaces of a vector space V, where U ⊆ W....
Let S, U, and W be subspaces of a vector space V, where U ⊆ W. Show that U + (W ∩ S) = W ∩ (U + S)
Let U and W be subspaces of a nite dimensional vector space V such that U...
Let U and W be subspaces of a nite dimensional vector space V such that U ∩ W = {~0}. Dene their sum U + W := {u + w | u ∈ U, w ∈ W}. (1) Prove that U + W is a subspace of V . (2) Let U = {u1, . . . , ur} and W = {w1, . . . , ws} be bases of U and W respectively. Prove that U ∪ W...
Let V be an n-dimensional vector space. Let W and W2 be unequal subspaces of V,...
Let V be an n-dimensional vector space. Let W and W2 be unequal subspaces of V, each of dimension n - 1. Prove that V =W1 + W2 and dim(Win W2) = n - 2.
Let U and V be subspaces of the vector space W . Recall that U ∩...
Let U and V be subspaces of the vector space W . Recall that U ∩ V is the set of all vectors ⃗v in W that are in both of U or V , and that U ∪ V is the set of all vectors ⃗v in W that are in at least one of U or V i: Prove: U ∩V is a subspace of W. ii: Consider the statement: “U ∪ V is a subspace of W...
Let T:V→V be an endomorphism of a finite dimensional vector space over the field Z/pZ with...
Let T:V→V be an endomorphism of a finite dimensional vector space over the field Z/pZ with p elements, satisfying the equation Tp=T. Show that T is diagonalisable.
(3) Let V be a finite dimensional vector space, and let T: V® V be a...
(3) Let V be a finite dimensional vector space, and let T: V® V be a linear transformation such that rk(T) = rk(T2). a) Show that ker(T) = ker(T2). b) Show that 0 is the only vector that lies in both the null space of T, and the range space of T
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose...
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose that T is a linear transformation from V to itself and T(u) = u + v, T(v) = u, T(w) = v. 1. Find the matrix of T relative to the ordered basis B. 2. A typical element of V looks like au + bv + cw, where a, b and c are scalars. Find T(au + bv + cw). Now that you know...
let T:V to W be a linear transdormation of vector space V and W and let...
let T:V to W be a linear transdormation of vector space V and W and let B=(v1,v2,...,vn) be a basis for V. Show that if (Tv1,Tv2,...,Tvn) is linearly independent, thenT is injecfive.
Let V be a finite-dimensional vector space and let T be a linear map in L(V,...
Let V be a finite-dimensional vector space and let T be a linear map in L(V, V ). Suppose that dim(range(T 2 )) = dim(range(T)). Prove that the range and null space of T have only the zero vector in common
Let V be an n-dimensional vector space and W a vector space that is isomorphic to...
Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" the Definiton of isomorphic:  Let V be an n-dimensional vector space and W a vector space that is isomorphic to V. Prove that W is also n-dimensional. Give a clear, detailed, step-by-step argument using the definitions of "dimension" and "isomorphic" The Definition of dimenion: the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT