Question

Let U and W be subspaces of a finite dimensional vector space V such that V=U⊕W. For any x∈V write x=u+w where u∈U and w∈W. Let R:U→U and S:W→W be linear transformations and define T:V→V by Tx=Ru+Sw

.

Show that detT=detRdetS

.

Answer #1

Let S, U, and W be subspaces of a vector space V, where U ⊆ W.
Show that U + (W ∩ S) = W ∩ (U + S)

Let U and W be subspaces of a nite dimensional vector space V
such that U ∩ W = {~0}. Dene their sum U + W := {u + w | u ∈ U, w ∈
W}.
(1) Prove that U + W is a subspace of V .
(2) Let U = {u1, . . . , ur} and W = {w1, . . . , ws} be bases
of U and W respectively. Prove that U ∪ W...

Let V be an n-dimensional vector space. Let W and W2 be unequal
subspaces of V, each of dimension n - 1. Prove that V =W1 + W2 and
dim(Win W2) = n - 2.

Let U and V be subspaces of the vector space W . Recall that U ∩
V is the set of all vectors ⃗v in W that are in both of U or V ,
and that U ∪ V is the set of all vectors ⃗v in W that are in at
least one of U or V
i: Prove: U ∩V is a subspace of W.
ii: Consider the statement: “U ∪ V is a subspace of W...

Let T:V→V be an endomorphism of a finite dimensional vector
space over the field Z/pZ with p elements, satisfying the equation
Tp=T. Show that T is diagonalisable.

(3) Let V be a finite dimensional vector space, and let T: V® V
be a linear transformation such that rk(T) = rk(T2).
a) Show that ker(T) = ker(T2).
b) Show that 0 is the only vector that lies in
both the null space of T, and the range space of T

Let V be a three-dimensional vector space with ordered basis B =
{u, v, w}.
Suppose that T is a linear transformation from V to itself and
T(u) = u + v,
T(v) = u, T(w) =
v.
1. Find the matrix of T relative to the ordered basis B.
2. A typical element of V looks like
au + bv +
cw, where a, b and c
are scalars. Find T(au +
bv + cw). Now
that you know...

let T:V to W be a linear transdormation of vector
space V and W and let B=(v1,v2,...,vn) be a basis for V. Show that
if (Tv1,Tv2,...,Tvn) is linearly independent, thenT is
injecfive.

Let V be a finite-dimensional vector space and let T be a linear
map in L(V, V ). Suppose that dim(range(T 2 )) = dim(range(T)).
Prove that the range and null space of T have only the zero vector
in common

Let V be an n-dimensional vector space and W a vector
space that is isomorphic to V. Prove that W is also
n-dimensional. Give a clear, detailed, step-by-step
argument using the definitions of "dimension" and "isomorphic"
the Definiton of isomorphic: Let V be an
n-dimensional vector space and W a vector space that is
isomorphic to V. Prove that W is also n-dimensional. Give
a clear, detailed, step-by-step argument using the definitions of
"dimension" and "isomorphic"
The Definition of dimenion: the...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 16 minutes ago

asked 47 minutes ago

asked 50 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago