Question

Suppose that R is a commutative ring and I is an ideal in R. Please prove...

Suppose that R is a commutative ring and I is an ideal in R. Please prove that I is maximal
if and only if R/I is a field.

Homework Answers

Answer #1

Hand written proof:

thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let I be an ideal in a commutative ring R with identity. Prove that R/I is...
Let I be an ideal in a commutative ring R with identity. Prove that R/I is a field if and only if I ? R and whenever J is an ideal of R containing I, I = J or J = R.
Let I, M be ideals of the commutative ring R. Show that M is a maximal...
Let I, M be ideals of the commutative ring R. Show that M is a maximal ideal of R if and only if M/I is a maximal ideal of R/I.
Let R be a commutative ring with unity. Prove that the principal ideal generated by x...
Let R be a commutative ring with unity. Prove that the principal ideal generated by x in the polynomial ring R[x] is a prime ideal iff R is an integral domain.
A commutative ring with unity is called regular if for each a in R there exists...
A commutative ring with unity is called regular if for each a in R there exists an x in R such that a^2x=a. Prove that in a regular ring, every prime ideal is maximal.
If R is a commutative ring with unity and A is a proper ideal of R,...
If R is a commutative ring with unity and A is a proper ideal of R, show that R/A is a commutative ring with unity.
Please give examples for (a) a non-commutative ring (b) a subgroup H of a group G...
Please give examples for (a) a non-commutative ring (b) a subgroup H of a group G which is not normal in G (c) a commutative ring R in which the zero ideal {0} is not prime (d) a nonzero proper ideal J in a commutative ring IZ which is not maximal in R
Let P be a commutative PID (principal ideal domain) with identity. Suppose that there is a...
Let P be a commutative PID (principal ideal domain) with identity. Suppose that there is a surjective ring homomorphism f : P -> R for some (commutative) ring R. Show that every ideal of R is principal. Use this to list all the prime and maximal ideals of Z12.
9.3.2 Problem. Let R be a ring and I an ideal of R. Let π :...
9.3.2 Problem. Let R be a ring and I an ideal of R. Let π : R→R/I be the natural projection. Let J be an ideal of R. Show that π−1(π(J)) = (I, J). Show that if J is a maximal ideal of R with, I not ⊆ J, then π (J) = R/I. Suppose that J is an ideal of R with I ⊆ J. Show that J is a maximal ideal of R if and only if π(J)...
Let I be an ideal of the ring R. Prove that the reduction map R[x] →...
Let I be an ideal of the ring R. Prove that the reduction map R[x] → (R/I)[x] is a ring homomorphism.
Let R be a ring, and set I:={(r,0)|r∈R}. Prove that I is an ideal of R×R,...
Let R be a ring, and set I:={(r,0)|r∈R}. Prove that I is an ideal of R×R, and that (R×R)/I is isomorphism to R.