Question

Please give examples for (a) a non-commutative ring (b) a subgroup H of a group G...

Please give examples for
(a) a non-commutative ring

(b) a subgroup H of a group G which is not normal in G
(c) a commutative ring R in which the zero ideal {0} is not prime

(d) a nonzero proper ideal J in a commutative ring IZ which is not maximal in R

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R be a commutative ring and let a ε R be a non-zero element. Show...
Let R be a commutative ring and let a ε R be a non-zero element. Show that Ia ={x ε R such that ax=0} is an ideal of R. Show that if R is a domain then Ia is a prime ideal
Let G be a non-trivial finite group, and let H < G be a proper subgroup....
Let G be a non-trivial finite group, and let H < G be a proper subgroup. Let X be the set of conjugates of H, that is, X = {aHa^(−1) : a ∈ G}. Let G act on X by conjugation, i.e., g · (aHa^(−1) ) = (ga)H(ga)^(−1) . Prove that this action of G on X is transitive. Use the previous result to prove that G is not covered by the conjugates of H, i.e., G does not equal...
(a) Show that H =<(1234)> is a normal subgroup of G=S4 (b) Is the quotient group...
(a) Show that H =<(1234)> is a normal subgroup of G=S4 (b) Is the quotient group G/H abelian? Justify?
Let G be a group, and H a subgroup of G, let a,b?G prove the statement...
Let G be a group, and H a subgroup of G, let a,b?G prove the statement or give a counterexample: If aH=bH, then Ha=Hb
Let G be a finite group and let H be a subgroup of order n. Suppose...
Let G be a finite group and let H be a subgroup of order n. Suppose that H is the only subgroup of order n. Show that H is normal in G. Hint: Consider the subgroup aHa-1 of G. Please explain in detail!
(b) If H is a p-subgroup of a finite group G, prove that H is contained...
(b) If H is a p-subgroup of a finite group G, prove that H is contained in a Sylow p-subgroup of G. [Hint: Consider the H-conjugacy class equation for the set of all Sylowp-subgroups of G.]
Let H be a subgroup of the group G. Define a set B by B =...
Let H be a subgroup of the group G. Define a set B by B = {x ∈ G | xax−1 ∈ H for all a ∈ H}. Show that H < B.
In each part below, a group G and a subgroup H are given. Determine whether H...
In each part below, a group G and a subgroup H are given. Determine whether H is normal in G. If it is, list the elements of the quotient group G/H. (a) G = Z-15 × Z-20 and H = <(10, 17)> (b) G = S-6 and H = A-6 (c) G = S-5 and H = A-4
let g be a group. let h be a subgroup of g. define a~b. if ab^-1...
let g be a group. let h be a subgroup of g. define a~b. if ab^-1 is in h. prove ~ is an equivalence relation on g
Let G be a group with subgroups H and K. (a) Prove that H ∩ K...
Let G be a group with subgroups H and K. (a) Prove that H ∩ K must be a subgroup of G. (b) Give an example to show that H ∪ K is not necessarily a subgroup of G. Note: Your answer to part (a) should be a general proof that the set H ∩ K is closed under the operation of G, includes the identity element of G, and contains the inverse in G of each of its elements,...