Question

The sum of independent normally distributed random variables is normally distributed with mean equal to the...

The sum of independent normally distributed random variables is normally distributed with mean equal to the sum of the individual means and variance equal to the sum of the individual variances. If X is the sum of three independent normally distributed random variables with respective means 100, 150, and 200 and respective standard deviations 15, 20, and 25, the probability that X is between 420 and 460 is closest to which of the following?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random variable X is normally distributed with a mean of 121 and a variance of...
A random variable X is normally distributed with a mean of 121 and a variance of 121, and a random variable Y is normally distributed with a mean of 150 and a variance of 225. the random variables have a correlation coefficient equal to 0.6. Find the mean and variance of the random variable : W= 6X + 3Y
1) Let the random variables ? be the sum of independent Poisson distributed random variables, i.e.,...
1) Let the random variables ? be the sum of independent Poisson distributed random variables, i.e., ? = ∑ ? (top) ?=1(bottom) ?? , where ?? is Poisson distributed with mean ?? . (a) Find the moment generating function of ?? . (b) Derive the moment generating function of ?. (c) Hence, find the probability mass function of ?. 2)The moment generating function of the random variable X is given by ??(?) = exp{7(?^(?)) − 7} and that of ?...
Let X and Y be independent and normally distributed random variables with waiting values E (X)...
Let X and Y be independent and normally distributed random variables with waiting values E (X) = 3, E (Y) = 4 and variances V (X) = 2 and V (Y) = 3. a) Determine the expected value and variance for 2X-Y Waiting value µ = Variance σ2 = σ 2 = b) Determine the expected value and variance for ln (1 + X 2) c) Determine the expected value and variance for X / Y
A random variable X is normally distributed with a mean of 100 and a variance of...
A random variable X is normally distributed with a mean of 100 and a variance of 100​, and a random variable Y is normally distributed with a mean of 180 and a variance of 324. The random variables have a correlation coefficient equal to −0.4. Find the mean and variance of the random variable below.W=2X−4Y μW= ​(Type an integer or a​ decimal.) σ2W= ​(Type an integer or a​ decimal.)
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10...
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10 and variance 16. in addition, Suppose that Y1, Y2, Y3, Y4, and Y5are independent and identically distributed random variables with mean 15 and variance 25. Suppose further that X1, X2, X3, and X4 and Y1, Y2, Y3, Y4, and Y5are independent. Find Cov[bar{X} + bar{Y} + 10, 2bar{X} - bar{Y}], where bar{X} is the sample mean of X1, X2, X3, and X4 and bar{Y}...
Let ? and ? be independent random variables. Random variable ? has mean ?? and variance...
Let ? and ? be independent random variables. Random variable ? has mean ?? and variance ?^2?, and random variable ? has mean ?? and variance ?^2? a) Prove that ?[?⋅?]=??⋅?? Guidance: Start with ?[?⋅?]=ΣΣ??⋅???(?,?)??, and then use the definition of independent random variables. b) Use a) to prove that ???(??+??)=?^2???(?)+?^2???(?). Guidance: Use the formula proved in the class ???(?)=?[?^2]−?^2[?]. c) Let ? =5?+3?. Find the mean and variance of ? in terms of the means and variances of ?...
A random variable X is normally distributed with a mean of 81 and a variance of...
A random variable X is normally distributed with a mean of 81 and a variance of 81 and a random variable Y is normally distributed with a mean of 160 and a variance of 256 The random variables have a correlation coefficient equal to negative 0.5 Find the mean and variance of the random variable below. Wequals=55Xminus−88Y
1. If X  is a normal distributed random variable with population mean 5 and population variance 4...
1. If X  is a normal distributed random variable with population mean 5 and population variance 4 , the probability that X  is lies between 1 and 7 is closest or equal to 0.0228 0.8185 0.1815 0.8413 2. Suppose X1  and X2  are both normally distributed random variables with population mean 10 and population variance 4. If X1  and X2   are independent, the probability that average of X1  and X2  lies between 8 and 12 is closest or equal to X2 0.9214 0.0786 0.1572 0.8428 3. A...
Let X and Y be independent and identically distributed random variables with mean μ and variance...
Let X and Y be independent and identically distributed random variables with mean μ and variance σ2. Find the following: a) E[(X + 2)2] b) Var(3X + 4) c) E[(X - Y)2] d) Cov{(X + Y), (X - Y)}
The following three independent random samples are obtained from three normally distributed populations with equal variance....
The following three independent random samples are obtained from three normally distributed populations with equal variance. The dependent variable is starting hourly wage, and the groups are the types of position (internship, co-op, work study). Group 1: Internship Group 2: Co-op Group 3: Work Study 10.5 8.25 12.5 10.75 9.5 13 12.25 10.5 11.75 15 12.75 10.5 11 11.75 13.75 12 10 12.75 14.25 12 13.25 Use technology to conduct a one-factor ANOVA to determine if the group means are...