Question

Let ? and ? be independent random variables. Random variable ? has mean ?? and variance...

Let ? and ? be independent random variables. Random variable ? has mean ?? and variance ?^2?, and random variable ? has mean ?? and variance ?^2?
a) Prove that ?[?⋅?]=??⋅??
Guidance: Start with ?[?⋅?]=ΣΣ??⋅???(?,?)??, and then use the definition of independent random variables.
b) Use a) to prove that ???(??+??)=?^2???(?)+?^2???(?).
Guidance: Use the formula proved in the class ???(?)=?[?^2]−?^2[?].
c) Let ? =5?+3?. Find the mean and variance of ? in terms of the means and variances of ? and ?.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
X and Y are independent random variables. The mean and variance of X are 2 and...
X and Y are independent random variables. The mean and variance of X are 2 and 1 respectively. The mean and variance of Y are 3 and 2 respectively. Which of the statements below about the random variable X-Y is true? a. X-Y~Normal(-1,1) b. X-Y~Normal(1,3) c. X-Y has mean -1 and variance 3. d. X-Y has mean 5 and variance 3.
Let X and Y be independent and identically distributed random variables with mean μ and variance...
Let X and Y be independent and identically distributed random variables with mean μ and variance σ2. Find the following: a) E[(X + 2)2] b) Var(3X + 4) c) E[(X - Y)2] d) Cov{(X + Y), (X - Y)}
Let X be a random variable with a mean of 9 and a variance of 16....
Let X be a random variable with a mean of 9 and a variance of 16. Let Y be a random variable with a mean of 10 and a variance of 25. Suppose the population correlation coefficient between random variables X and Y is -0.4. a) Find the mean of the random variable W = 3X - 5Y. b) Find the standard deviation of the random variable Z = X + Y
5. Let X1, X2, . . . be independent random variables all with mean E(Xi) =...
5. Let X1, X2, . . . be independent random variables all with mean E(Xi) = 7 and variance Var(Xi) = 9. Set Yn = X1 + X2 + · · · + Xn n (n = 1, 2, 3, . . .) (a) Find E(Y2) and E(Y5). (b) Find Cov(Y2, Y5). (c) Find E (Y2 | X1). (d) How should your answers from parts (a)–(c) be modified if the numbers “2”, “5”, “7” and “9” are replaced by m,...
1) Let the random variables ? be the sum of independent Poisson distributed random variables, i.e.,...
1) Let the random variables ? be the sum of independent Poisson distributed random variables, i.e., ? = ∑ ? (top) ?=1(bottom) ?? , where ?? is Poisson distributed with mean ?? . (a) Find the moment generating function of ?? . (b) Derive the moment generating function of ?. (c) Hence, find the probability mass function of ?. 2)The moment generating function of the random variable X is given by ??(?) = exp{7(?^(?)) − 7} and that of ?...
The sum of independent normally distributed random variables is normally distributed with mean equal to the...
The sum of independent normally distributed random variables is normally distributed with mean equal to the sum of the individual means and variance equal to the sum of the individual variances. If X is the sum of three independent normally distributed random variables with respective means 100, 150, and 200 and respective standard deviations 15, 20, and 25, the probability that X is between 420 and 460 is closest to which of the following?
Let X be a Gaussian random variable with mean μ and variance σ^2. Compute the following...
Let X be a Gaussian random variable with mean μ and variance σ^2. Compute the following moments: Remember that we use the terms Gaussian random variable and normal random variable interchangeably. (Enter your answers in terms of μ and σ.) E[X^2]= E[X^3]= E[X^4]= Var(X^2)= Please give the detail process of proof.
1. Let ?1, . . . ?5 be 5 independent random variables, ?(?? = 1) =...
1. Let ?1, . . . ?5 be 5 independent random variables, ?(?? = 1) = ?(?? = 0) = 1/2. Calculate the variance of the sample variance ?5 = 1 4 ∑︀ ? (??−?[?? ])2 .
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose...
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose that N is a random variable, independent of the Xi-s, that has a Poisson distribution with mean λ > 0. What is the expected value of X1 + X2 +···+ XN2? (A) N2 (B) λ + λ2 (C) λ2 (D) 1/λ2
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4....
STAT 180 Let X and Y be independent exponential random variables with mean equals to 4. 1) What is the covariance between XY and X. 2) Let Z = max ( X, Y). Find the Probability Density Function (PDF) of Z. 3) Use the answer in part 2 to compute the E(Z).