Question

The average age of passenger train cars is 19.4 years. If the distribution of ages is...

The average age of passenger train cars is 19.4 years. If the distribution of ages is normal and 14% of the cars are older than 22.7 years, find the standard deviation.

Homework Answers

Answer #1

solution:

Let X be the normal random variable representing the age of car

Given that

The average age of cars = = 19.4 years

Probability of cars older than 22.7 years = P(X>22.7) = 0.14

= 0.14

   = 0.14

= 0.14

= 0.14

= 0.86

   = 1.0805 [ use standard Normal distribution table]

   = 3.3 / 1.0805

   = 3.05

Required Standard Deviation () = 3.05 years

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The average age of passenger train cars is 19.4 years. If the distribution of ages is...
The average age of passenger train cars is 19.4 years. If the distribution of ages is normal and 15% of the cars are older than 21.1 years, find the standard deviation. Round z-value calculations to 2 decimal places and final answer to 2 decimal places.
(1 point) Randomly selected 14 student cars have ages with a mean of 8 years and...
(1 point) Randomly selected 14 student cars have ages with a mean of 8 years and a standard deviation of 3.6 years, while randomly selected 19 faculty cars have ages with a mean of 6 years and a standard deviation of 3.3 years. 1. Use a 0.01 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is (b) The critical value is (c) Is there sufficient evidence to support the claim...
Randomly selected 30 student cars have ages with a mean of 7 years and a standard...
Randomly selected 30 student cars have ages with a mean of 7 years and a standard deviation of 3.6 years, while randomly selected 23 faculty cars have ages with a mean of 5.9 years and a standard deviation of 3.5 years. 1. Use a 0.01 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is (b) The critical value is (c) Is there sufficient evidence to support the claim that student...
the average age of doctors in a certain hospital is 50.0 years old. Suppose the distribution...
the average age of doctors in a certain hospital is 50.0 years old. Suppose the distribution of ages is normal and has a standard deviation of 6.0 years. If nine doctors are chosen at random for a committee, find the probability that the average age of those doctors is less than 50.6. Assume that the variable is normally distributed
Randomly selected 130 student cars have ages with a mean of 7.9 years and a standard...
Randomly selected 130 student cars have ages with a mean of 7.9 years and a standard deviation of 3.4 years, while randomly selected 65 faculty cars have ages with a mean of 5.7 years and a standard deviation of 3.3 years. 1. Use a 0.02 significance level to test the claim that student cars are older than faculty cars. The test statistic is The critical value is Is there sufficient evidence to support the claim that student cars are older...
Randomly selected 17 student cars have ages with a mean of 7 years and a standard...
Randomly selected 17 student cars have ages with a mean of 7 years and a standard deviation of 3.6 years, while randomly selected 20 faculty cars have ages with a mean of 5.6 years and a standard deviation of 3.7 years. 1. Use a 0.05 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is (b) The critical value is (c) Is there sufficient evidence to support the claim that student...
A sample of 17 randomly selected student cars have ages with a mean of 7.8 years...
A sample of 17 randomly selected student cars have ages with a mean of 7.8 years and a standard deviation of 3.6 years, while a sample of 22 randomly selected faculty cars have ages with a mean of 5.6 years and a standard deviation of 3.3 years. 1. Use a 0.05 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is 1.9619 (b) The critical value is 1.688 (c) Is there...
A sample of 17 randomly selected student cars have ages with a mean of 7.8 years...
A sample of 17 randomly selected student cars have ages with a mean of 7.8 years and a standard deviation of 3.63 years, while a sample of 22 randomly selected faculty cars have ages with a mean of 5.6 years and a standard deviation of 3.3 years. 1. Use a 0.05 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is (b) The critical value is (c) Is there sufficient evidence...
(1 point) Randomly selected 28 student cars have ages with a mean of 7.3 years and...
(1 point) Randomly selected 28 student cars have ages with a mean of 7.3 years and a standard deviation of 3.6 years, while randomly selected 17 faculty cars have ages with a mean of 5.5 years and a standard deviation of 3.3 years. 1. Use a 0.05 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is _______? (b) The critical value is _______ ? (c) Is there sufficient evidence to...
Thirty randomly selected student cars have ages with a mean of 7.8years and a standard deviation...
Thirty randomly selected student cars have ages with a mean of 7.8years and a standard deviation of 3.4 years, while fifteen randomly selected faculty cars have ages with a mean of 5.2 years and a standard deviation of 3.7 years. 1. Use a 0.01 significance level to test the claim that student cars are older than faculty cars, on average. (a) State the null and alternative hypotheses. (Type mu1 for the population mean age of student cars, and mu2 for...