Question

A sample of 17 randomly selected student cars have ages with a mean of 7.8 years...

A sample of 17 randomly selected student cars have ages with a mean of 7.8 years and a standard deviation of 3.6 years, while a sample of 22 randomly selected faculty cars have ages with a mean of 5.6 years and a standard deviation of 3.3 years.

1. Use a 0.05 significance level to test the claim that student cars are older than faculty cars.

(a) The test statistic is 1.9619

(b) The critical value is 1.688

(c) Is there sufficient evidence to support the claim that student cars are older than faculty cars?

Yes



2. Construct a 95% confidence interval estimate of the difference μs−μf, where μsμs is the mean age of student cars and μf is the mean age of faculty cars.
_______ <(μs−μf)< _______

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sample of 17 randomly selected student cars have ages with a mean of 7.8 years...
A sample of 17 randomly selected student cars have ages with a mean of 7.8 years and a standard deviation of 3.63 years, while a sample of 22 randomly selected faculty cars have ages with a mean of 5.6 years and a standard deviation of 3.3 years. 1. Use a 0.05 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is (b) The critical value is (c) Is there sufficient evidence...
Randomly selected 17 student cars have ages with a mean of 7 years and a standard...
Randomly selected 17 student cars have ages with a mean of 7 years and a standard deviation of 3.6 years, while randomly selected 20 faculty cars have ages with a mean of 5.6 years and a standard deviation of 3.7 years. 1. Use a 0.05 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is (b) The critical value is (c) Is there sufficient evidence to support the claim that student...
(1 point) Randomly selected 28 student cars have ages with a mean of 7.3 years and...
(1 point) Randomly selected 28 student cars have ages with a mean of 7.3 years and a standard deviation of 3.6 years, while randomly selected 17 faculty cars have ages with a mean of 5.5 years and a standard deviation of 3.3 years. 1. Use a 0.05 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is _______? (b) The critical value is _______ ? (c) Is there sufficient evidence to...
Randomly selected 3131 student cars have ages with a mean of 7.37.3 years and a standard...
Randomly selected 3131 student cars have ages with a mean of 7.37.3 years and a standard deviation of 3.43.4 years, while randomly selected 2525 faculty cars have ages with a mean of 5.65.6 years and a standard deviation of 3.53.5 years. 1. Use a 0.050.05 significance level to test the claim that student cars are older than faculty cars. (a) The null hypothesis is H0:μs=μfH0:μs=μf. What is the alternate hypothesis? A. HA:μs>μfHA:μs>μf B. HA:μs≠μfHA:μs≠μf C. HA:μs<μfHA:μs<μf (b) The test statistic...
(1 point) Randomly selected 14 student cars have ages with a mean of 8 years and...
(1 point) Randomly selected 14 student cars have ages with a mean of 8 years and a standard deviation of 3.6 years, while randomly selected 19 faculty cars have ages with a mean of 6 years and a standard deviation of 3.3 years. 1. Use a 0.01 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is (b) The critical value is (c) Is there sufficient evidence to support the claim...
Randomly selected 30 student cars have ages with a mean of 7 years and a standard...
Randomly selected 30 student cars have ages with a mean of 7 years and a standard deviation of 3.6 years, while randomly selected 23 faculty cars have ages with a mean of 5.9 years and a standard deviation of 3.5 years. 1. Use a 0.01 significance level to test the claim that student cars are older than faculty cars. (a) The test statistic is (b) The critical value is (c) Is there sufficient evidence to support the claim that student...
Randomly selected 130 student cars have ages with a mean of 7.9 years and a standard...
Randomly selected 130 student cars have ages with a mean of 7.9 years and a standard deviation of 3.4 years, while randomly selected 65 faculty cars have ages with a mean of 5.7 years and a standard deviation of 3.3 years. 1. Use a 0.02 significance level to test the claim that student cars are older than faculty cars. The test statistic is The critical value is Is there sufficient evidence to support the claim that student cars are older...
Randomly selected 2020 student cars (population 1) have ages with a mean of 77 years and...
Randomly selected 2020 student cars (population 1) have ages with a mean of 77 years and a standard deviation of 3.63.6 years, while randomly selected 2222 faculty cars (population 2) have ages with a mean of 55 years and a standard deviation of 3.73.7 years. (For the purposes of this exercise, the two populations are assumed to be normally distributed.) 1.    Use a 0.030.03 significance level to test the claim that student cars are older than faculty cars. The test statistic...
Thirty randomly selected student cars have ages with a mean of 7.8years and a standard deviation...
Thirty randomly selected student cars have ages with a mean of 7.8years and a standard deviation of 3.4 years, while fifteen randomly selected faculty cars have ages with a mean of 5.2 years and a standard deviation of 3.7 years. 1. Use a 0.01 significance level to test the claim that student cars are older than faculty cars, on average. (a) State the null and alternative hypotheses. (Type mu1 for the population mean age of student cars, and mu2 for...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 8484 cars owned by students had an average age of 5.78 years. A sample of 118 cars owned by faculty had an average age of 5.79 years. Assume that the population standard deviation for cars owned by students is 2.39 years, while the population standard deviation for cars owned by faculty is 3.27 years. Determine the...