Question

Suppose that x has a distribution with  and . If a random sample is taken of size...

Suppose that x has a distribution with  and . If a random sample is taken of size n = 37, find

Homework Answers

Answer #1

I think your complete question is:

"Suppose that x has a distribution with μ = 10 and σ = 4. If a random sample is taken of size n = 37, find σ x"

It can be solved as:

Since n>30, we can use central limit theorem. So,

=

= 4/

= 0.6576

If you want to find:

= μ = 10

Note: If your question is a bit different than the I solved here, Please comment that below. I'll solve it immediately.

Please upvote if you have liked my answer, would be of great help. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose x has a distribution with µ = 15 and σ = 14 If a random...
Suppose x has a distribution with µ = 15 and σ = 14 If a random sample of size n = 49 is drawn, what is the standard error (or standard deviation) of the sampling distribution x? Find P (15 < x < 17) for a random sample of size n = 49. If a random sample of size n = 64 is drawn, what is the standard error of the x sampling distribution? Find P (15 < x <...
Let a random sample be taken of size n = 100 from a population with a...
Let a random sample be taken of size n = 100 from a population with a known standard deviation of \sigma σ = 20. Suppose that the mean of the sample is X-Bar.png= 37. Find the 95% confidence interval for the mean, \mu μ , of the population from which the sample was drawn. (Answer in CI format and round the values to whole numbers.)
Suppose x has a mound-shaped distribution. A random sample of size 16 has sample mean 10...
Suppose x has a mound-shaped distribution. A random sample of size 16 has sample mean 10 and sample standard deviation 2. (b) Find a 90% confidence interval for μ (c) Interpretation Explain the meaning of the confidence interval you computed.
Suppose that the random sample is taken from a normal distribution N(8,9), and the random sample...
Suppose that the random sample is taken from a normal distribution N(8,9), and the random sample is between 1 to 25. Find the distribution of the sample mean. Find probability that the sample mean is less than or equal to 8.8 and the sample variance is less than or equal to 12.45, where the probabilities are independent. Find probability that the sample mean is less than 8+(.5829)S, where S is the sample standard deviation.
Suppose x has a distribution with μ = 50 and σ = 16. (a) If random...
Suppose x has a distribution with μ = 50 and σ = 16. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? (b) If the original x distribution is normal, can we say anything about the x distribution of random samples of size 16? Find P(46 ≤ x ≤ 51). (Round your answer to four decimal places.)
Suppose x has a distribution with μ = 24 and σ = 11. 1. If random...
Suppose x has a distribution with μ = 24 and σ = 11. 1. If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? 2. If the original x distribution is normal, can we say anything about the x distribution of random samples of size 16? 3. Find P(20 ≤ x ≤ 25). (Round your answer to four decimal places.) ___________________
Suppose x has a distribution with μ = 75 and σ = 8. (a) If random...
Suppose x has a distribution with μ = 75 and σ = 8. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? No, the sample size is too small.Yes, the x distribution is normal with mean μx = 75 and σx = 0.5.    Yes, the x distribution is normal with mean μx = 75 and σx = 2.Yes, the x distribution is normal with mean μx = 75...
Suppose that X has distribution N(μ, 4). A sample of size 25 yields a sample mean...
Suppose that X has distribution N(μ, 4). A sample of size 25 yields a sample mean X = 78.3. Obtain a 99-percent (two-sided) confidence interval for μ.
Suppose that X has distribution N(μ, 4). A sample of size 25 yields a sample mean...
Suppose that X has distribution N(μ, 4). A sample of size 25 yields a sample mean X = 78.3. Obtain a 99-percent (two-sided) confidence interval for μ.
Suppose x has a distribution with μ = 25 and σ = 2. (a) If random...
Suppose x has a distribution with μ = 25 and σ = 2. (a) If random samples of size n = 16 are selected, can we say anything about the x distribution of sample means? Yes, the x distribution is normal with mean μx = 25 and σx = 0.5.No, the sample size is too small.     Yes, the x distribution is normal with mean μx = 25 and σx = 2.Yes, the x distribution is normal with mean μx = 25...