Question

Suppose that the random sample is taken from a normal distribution N(8,9), and the random sample...

Suppose that the random sample is taken from a normal distribution N(8,9), and the random sample is between 1 to 25.

Find the distribution of the sample mean.

Find probability that the sample mean is less than or equal to 8.8 and the sample variance is less than or equal to 12.45, where the probabilities are independent.

Find probability that the sample mean is less than 8+(.5829)S, where S is the sample standard deviation.

Homework Answers

Answer #1

Let n = 25

Then as per the central limit theorem:

Sampling distribution will be normally distributed.

with

mean, = 8

=

= 3/5

= 0.6

P(8.8) = P(Z(8.8-8)/0.6)

= P(Z1.333)

= 0.9087

We know that

P(<(24*12.45/9) = P(<33.2)

= 0.9

P(<8+(.5829)s) =P((-8)/s)<0.5829)

= P((-8)/(s/5))<0.5829*5)

= P(Z<2.9145)

= 0.9982

Please upvote if you have liked my answer, would be of great help. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a random sample of n = 25 observations is selected from a population that is...
Suppose a random sample of n = 25 observations is selected from a population that is normally distributed with mean equal to 108 and standard deviation equal to 14. (a) Give the mean and the standard deviation of the sampling distribution of the sample mean x. mean     standard deviation     (b) Find the probability that x exceeds 113. (Round your answer to four decimal places.) (c) Find the probability that the sample mean deviates from the population mean ? = 108...
suppose a random sample of 25 is taken from a population that follows a normal distribution...
suppose a random sample of 25 is taken from a population that follows a normal distribution with unknown mean and a known variance of 144. Provide the null and alternative hypothesis necessary to determine if there is evidence that the mean of the population is greater than 100. Using the sample mean ybar as the test statistic and a rejection region of the form {ybar>k} find the value of k so that alpha=.15 Using the sample mean ybar as the...
Suppose a random sample of n = 16 observations is selected from a population that is...
Suppose a random sample of n = 16 observations is selected from a population that is normally distributed with mean equal to 102 and standard deviation equal to 10. a) Give the mean and the standard deviation of the sampling distribution of the sample mean x. mean = standard deviation = b) Find the probability that x exceeds 106. (Round your answer to four decimal places.) c) Find the probability that the sample mean deviates from the population mean μ...
A random sample of size n1 = 25, taken from a normal population with a standard...
A random sample of size n1 = 25, taken from a normal population with a standard deviation σ1 = 5.2, has a sample mean = 85. A second random sample of size n2 = 36, taken from a different normal population with a standard deviation σ2 = 3.4, has a sample mean = 83. Test the claim that both means are equal at a 5% significance level. Find P-value.
a A random sample of eight observations was taken from a normal population. The sample mean...
a A random sample of eight observations was taken from a normal population. The sample mean and standard deviation are x = 75 and s = 50. Can we infer at the 10% significance level that the population mean is less than 100? b Repeat part (a) assuming that you know that the population standard deviation is σ = 50. c Review parts (a) and (b). Explain why the test statistics differed.
A random sample of n = 25 is selected from a normal population with mean μ...
A random sample of n = 25 is selected from a normal population with mean μ = 101 and standard deviation σ = 13. (a) Find the probability that x exceeds 108. (Round your answer to four decimal places.) (b) Find the probability that the sample mean deviates from the population mean μ = 101 by no more than 3. (Round your answer to four decimal places.)
Suppose a random sample of n=36 measurements is selected from a population with mean u=256 and...
Suppose a random sample of n=36 measurements is selected from a population with mean u=256 and variance o^2=144. a. Describe the sampling distribution of the sample mean x bar. (Hint: describe the shape, calculate the mean and the standard deviation of the sampling distribution of x bar. b. What is the probability that the sample mean is greater than 261?
A random sample of 11 observations was taken from a normal population. The sample mean and...
A random sample of 11 observations was taken from a normal population. The sample mean and standard deviation are xbar= 74.5 and s= 9. Can we infer at the 5% significance level that the population mean is greater than 70? I already found the test statistic (1.66) but I’m at a loss for how to find the p-value.
Suppose a simple random sample of size n=200 is obtained from a population whose size is...
Suppose a simple random sample of size n=200 is obtained from a population whose size is N = 20000 and whose population proportion with a specified characteristic is p equals 0.8. ​(a) Describe the sampling distribution of Determine the mean of the sampling distribution Determine the standard deviation of the sampling distribution ​(b) What is the probability of obtaining x= 168or more individuals with the​ characteristic? That​ is, what is P(p greater than or equal to 0.84? ​(c) What is...
A sample of n = 16 is to be taken from a distribution that can reasonably...
A sample of n = 16 is to be taken from a distribution that can reasonably be assumed to be Normal with a standard deviation σ of 100. The sample mean comes out to be 110. 1. The standard error of the mean, that is, the standard deviation of the sample mean, is σx¯ = σ/√ n. What is its numerical value? 2. The 97.5 percentile, 1.96, of the standard Normal distribution is used for a 95% confi- dence interval....