Question

Consider the sample x1, x2, ..., xn with sample mean x̅ and sample standard deviation s...

Consider the sample x1, x2, ..., xn with sample mean x̅ and sample standard deviation s .Let Zi = (xi - x̅ )/s, i = 1,2, ..., n. What are the values of the sample mean and sample standard deviation of zi ? Explain the answers with equations.

Homework Answers

Answer #1

given that

Consider the sample x1, x2, ..., xn with sample mean x̅ and sample standard deviation s .Let Zi = (xi - x̅ )/s, i = 1,2, ..., n.

, i = 1,2,...,n.

sample mean   

sample standard deviation =

  

sample standard deviation

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2,...,Xn represent n random draws from a population with standard deviation σ and variance...
Let X1, X2,...,Xn represent n random draws from a population with standard deviation σ and variance σ^2 , so that V ar[X1] = V ar[X2] = ... = V ar[Xn] = σ^ 2 . Define the sample average taken from a sample of size n as follows: X¯ n ≡ (X1 + X2 + ... + Xn)/ n . a) Derive an expression for the standard deviation of X¯ n. [Hint: Your answer should depend only on σ and n]...
Let X1, X2, · · · , Xn be a random sample from an exponential distribution...
Let X1, X2, · · · , Xn be a random sample from an exponential distribution f(x) = (1/θ)e^(−x/θ) for x ≥ 0. Show that likelihood ratio test of H0 : θ = θ0 against H1 : θ ≠ θ0 is based on the statistic n∑i=1 Xi.
Suppose n numbers X1, X2, . . . , Xn are chosen from a uniform distribution...
Suppose n numbers X1, X2, . . . , Xn are chosen from a uniform distribution on [0, 10]. We say that there is an increase at i if Xi < Xi+1. Let I be the number of increases. Find E[I].
Let X1, X2, . . ., Xn be independent, but not identically distributed, samples. All these...
Let X1, X2, . . ., Xn be independent, but not identically distributed, samples. All these Xi ’s are assumed to be normally distributed with Xi ∼ N(θci , σ^2 ), i = 1, 2, . . ., n, where θ is an unknown parameter, σ^2 is known, and ci ’s are some known constants (not all ci ’s are zero). We wish to estimate θ. (a) Write down the likelihood function, i.e., the joint density function of (X1, ....
Let X1, X2, . . . , Xn be a random sample of size n from...
Let X1, X2, . . . , Xn be a random sample of size n from a distribution with variance σ^2. Let S^2 be the sample variance. Show that E(S^2)=σ^2.
Let X1,...,Xn be a sample drawn from a normal population with mean μ and standard deviation...
Let X1,...,Xn be a sample drawn from a normal population with mean μ and standard deviation σ. Find E[X ̄S2].
Let X1, X2, . . . , Xn be iid following exponential distribution with parameter λ...
Let X1, X2, . . . , Xn be iid following exponential distribution with parameter λ whose pdf is f(x|λ) = λ^(−1) exp(− x/λ), x > 0, λ > 0. (a) With X(1) = min{X1, . . . , Xn}, find an unbiased estimator of λ, denoted it by λ(hat). (b) Use Lehmann-Shceffee to show that ∑ Xi/n is the UMVUE of λ. (c) By the definition of completeness of ∑ Xi or other tool(s), show that E(λ(hat) |  ∑ Xi)...
Suppose that we have a random sample X1, ** , Xn drawn from a distribution that...
Suppose that we have a random sample X1, ** , Xn drawn from a distribution that only takes positive values. Suppose that the sample size n is sufficiently large. Consider the new random variable ∏ n i=1 Xi . Derive the distribution of this new random variable and explain your reasoning mathematically
Suppose that we have a random sample X1, · · , Xn drawn from a distribution...
Suppose that we have a random sample X1, · · , Xn drawn from a distribution that only takes positive values. Suppose that the sample size n is sufficiently large. Consider the new random variable ∏ n i=1 Xi . Derive the distribution of this new random variable and explain your reasoning mathematically
Let Xi, i=1,...,n be independent exponential r.v. with mean 1/ui. Define Yn=min(X1,...,Xn), Zn=max(X1,...,Xn). 1. Define the...
Let Xi, i=1,...,n be independent exponential r.v. with mean 1/ui. Define Yn=min(X1,...,Xn), Zn=max(X1,...,Xn). 1. Define the CDF of Yn,Zn 2. What is E(Zn) 3. Show that the probability that Xi is the smallest one among X1,...,Xn is equal to ui/(u1+...+un)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT