Question

Let X1, X2, . . . , Xn be iid following exponential distribution with parameter λ...

Let X1, X2, . . . , Xn be iid following exponential distribution with parameter λ whose pdf is f(x|λ) = λ^(−1) exp(− x/λ), x > 0, λ > 0.

(a) With X(1) = min{X1, . . . , Xn}, find an unbiased estimator of λ, denoted it by λ(hat).

(b) Use Lehmann-Shceffee to show that ∑ Xi/n is the UMVUE of λ.

(c) By the definition of completeness of ∑ Xi or other tool(s), show that E(λ(hat) |  ∑ Xi) = ∑ Xi/n

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1 and X2 be IID exponential with parameter λ > 0. Determine the distribution of...
Let X1 and X2 be IID exponential with parameter λ > 0. Determine the distribution of Y = X1/(X1 + X2).
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean...
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean β. (1) Find the maximum likelihood estimator of β. (2) Determine whether the maximum likelihood estimator is unbiased for β. (3) Find the mean squared error of the maximum likelihood estimator of β. (4) Find the Cramer-Rao lower bound for the variances of unbiased estimators of β. (5) What is the UMVUE (uniformly minimum variance unbiased estimator) of β? What is your reason? (6)...
Let X1, ..., Xn be a sample from an exponential population with parameter λ. (a) Find...
Let X1, ..., Xn be a sample from an exponential population with parameter λ. (a) Find the maximum likelihood estimator for λ. (NOT PI FUNCTION) (b) Is the estimator unbiased? (c) Is the estimator consistent?
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) =...
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) = θx^(θ−1) , 0 < x < 1, θ > 0. Is there an unbiased estimator of some function γ(θ), whose variance attains the Cramer-Rao lower bound?
Let X1, X2, . . . Xn be iid exponential random variables with unknown mean β....
Let X1, X2, . . . Xn be iid exponential random variables with unknown mean β. Find the method of moments estimator of β
Let X = ( X1, X2, X3, ,,,, Xn ) is iid, f(x, a, b) =...
Let X = ( X1, X2, X3, ,,,, Xn ) is iid, f(x, a, b) = 1/ab * (x/a)^{(1-b)/b} 0 <= x <= a ,,,,, b < 1 then, Show the density of the statistic T = X(n) is given by FX(n) (x) = n/ab * (x/a)^{n/(b-1}}   for 0 <= x <= a ; otherwise zero. # using the following P (X(n) < x ) = P (X1 < x, X2 < x, ,,,,,,,,, Xn < x ), Then assume...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. I have the pdf...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. I have the pdf (b) Create an unbiased estimator for θ based on Xmin. Compute the variance of the resulting estimator. (c) Perform a Monte Carlo simulation of N= 10,0000 samples of your unbiased estimator from part (b) using θ = 2 and n = 100 to validate your answer. Include a histogram of the samples. (d) Which is more efficient: your estimator from part (b) or the...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. (b) Create an unbiased...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. (b) Create an unbiased estimator for θ based on Xmin. Compute the variance of the resulting estimator. (c) Perform a Monte Carlo simulation of N= 10,0000 samples of your unbiased estimator from part (b) using θ = 2 and n = 100 to validate your answer. Include a histogram of the samples. (d) Which is more efficient: your estimator from part (b) or the MLE for θ? (e)...
Let X1, X2, …, Xn be iid with pdf ?(?|?) = ? −(?−?)? −? −(?−?) ,...
Let X1, X2, …, Xn be iid with pdf ?(?|?) = ? −(?−?)? −? −(?−?) , −∞ < ? < ∞. Find a C.S.S of θ
Let X1, X2, · · · , Xn be a random sample from an exponential distribution...
Let X1, X2, · · · , Xn be a random sample from an exponential distribution f(x) = (1/θ)e^(−x/θ) for x ≥ 0. Show that likelihood ratio test of H0 : θ = θ0 against H1 : θ ≠ θ0 is based on the statistic n∑i=1 Xi.