Question

In a random sample of five ​people, the mean driving distance to work was 22.9 miles...

In a random sample of five

​people, the mean driving distance to work was 22.9

miles and the standard deviation was 4.9

miles. Assuming the population is normally distributed and using the​ t-distribution, a 95​%

confidence interval for the population mean is (16.8, 29.0)

​(and the margin of error is

6.1​). Through​ research, it has been found that the population standard deviation of driving distances to work is 6.2.

Using the standard normal distribution with the appropriate calculations for a standard deviation that is​ known, find the margin of error and construct a 95​%

confidence interval for the population mean.

Interpret and compare the results.

Homework Answers

Answer #1

sample mean, xbar = 22.9
sample standard deviation, σ = 6.2
sample size, n = 5


Given CI level is 95%, hence α = 1 - 0.95 = 0.05
α/2 = 0.05/2 = 0.025, Zc = Z(α/2) = 1.96


ME = zc * σ/sqrt(n)
ME = 1.96 * 6.2/sqrt(5)
ME = 5.43

CI = (xbar - Zc * s/sqrt(n) , xbar + Zc * s/sqrt(n))
CI = (22.9 - 1.96 * 6.2/sqrt(5) , 22.9 + 1.96 * 6.2/sqrt(5))
CI = (17.47 , 28.33)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 17.47 < μ < 28.33 which indicates that we are 95% confident that the true population mean μ is contained by the interval (17.47 , 28.33)


Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a random sample of five ​people, the mean driving distance to work was 24.9 miles...
In a random sample of five ​people, the mean driving distance to work was 24.9 miles and the standard deviation was 4.3 miles. Assuming the population is normally distributed and using the​ t-distribution, a 99​%confidence interval for the population mean mu is left parenthesis 16.0 comma 33.8 right parenthesis ​(and the margin of error is 8.9​). Through​ research, it has been found that the population standard deviation of driving distances to work is 3.3 Using the standard normal distribution with...
In a random sample of six ​people, the mean driving distance to work was 18.3 miles...
In a random sample of six ​people, the mean driving distance to work was 18.3 miles and the standard deviation was 4.3 miles. Assume the population is normally distributed and use the​ t-distribution to find the margin of error and construct a 90​% confidence interval for the population mean mu. Interpret the results. Identify the margin of error.
In a random sample of twelve ​people, the mean driving distance to work was 24.5 miles...
In a random sample of twelve ​people, the mean driving distance to work was 24.5 miles and the standard deviation was 5.2 miles. Assume the population is normally distributed and use the​ t-distribution to find the margin of error and construct a 90% confidence interval for the population mean μ. Identify the margin of error. Construct a 90​% confidence interval for the population mean.
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes...
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.2 minutes. A 95​% confidence interval using the​ t-distribution was calculated to be left parenthesis 29.5 comma 41.5 right parenthesis. After researching commute times to​ work, it was found that the population standard deviation is 9.2 minutes. Find the margin of error and construct a 95​% confidence interval using the standard normal distribution with the appropriate calculations for a...
In a random sample of 8 people, the mean commute time to work was 35.5 minutes...
In a random sample of 8 people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.3 minutes. A 98% confidence interval using the t-distribution was calculated to be (27.8,43.2). After researching commute times to work, it was found that the population standard deviation is 8.9 minutes. Find the margin of error and construct 98% confidence interval using the standard normal distribution with the appropriate calculations for a standard deviation that is known. Compare the...
In a random sample of 88 ​people, the mean commute time to work was 35.5 minutes...
In a random sample of 88 ​people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.4 minutes. A 98​% confidence interval using the​ t-distribution was calculated to be left (27.7,43.3). After researching commute times to​ work, it was found that the population standard deviation is 8.7 minutes. Find the margin of error and construct a 98% confidence interval using the standard normal distribution with the appropriate calculations for a standard deviation that is known....
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes...
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.4 minutes. A 98​% confidence interval using the​ t-distribution was calculated to be left (27.7,43.3). After researching commute times to​ work, it was found that the population standard deviation is 8.7 minutes. Find the margin of error and construct a 98​% confidence interval using the standard normal distribution with the appropriate calculations for a standard deviation that is known....
in a random sample of 8 people the mean commute time to work was 34.5 minutes...
in a random sample of 8 people the mean commute time to work was 34.5 minutes and the standard deviation was 7.2 minutes. A 90% confidence interval using the t distribution was calculated to be (29.7, 39.3). After researching commute times to work, it was found that the population standard deviation is 9.2 minutes. Find the margin of error and construct a 90% confidence interval using the standard normal distribution with the appropriate calculations for a standard deviation that is...
In a random sample of 8 ​people, the mean commute time to work was 33.5 minutes...
In a random sample of 8 ​people, the mean commute time to work was 33.5 minutes and the standard deviation was 7.2 minutes. A 90​% confidence interval using the​ t-distribution was calculated to be left parenthesis 28.7 comma 38.3 right parenthesis. After researching commute times to​ work, it was found that the population standard deviation is 9.3 minutes. Find the margin of error and construct a 90​% confidence interval using the standard normal distribution with the appropriate calculations for a...
In a random sample of 88 ​people, the mean commute time to work was 36.536.5 minutes...
In a random sample of 88 ​people, the mean commute time to work was 36.536.5 minutes and the standard deviation was 7.27.2 minutes. A 9898​% confidence interval using the​ t-distribution was calculated to be left parenthesis 28.9 comma 44.1 right parenthesis(28.9,44.1). After researching commute times to​ work, it was found that the population standard deviation is 8.78.7 minutes. Find the margin of error and construct a 9898​% confidence interval using the standard normal distribution with the appropriate calculations for a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT