Question

In a random sample of 8 people, the mean commute time to work was 35.5 minutes...

In a random sample of 8 people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.3 minutes. A 98% confidence interval using the t-distribution was calculated to be (27.8,43.2). After researching commute times to work, it was found that the population standard deviation is 8.9 minutes. Find the margin of error and construct 98% confidence interval using the standard normal distribution with the appropriate calculations for a standard deviation that is known. Compare the results.

The margin of error of ? is:

A 98% confidence interval using the standard normal distribution is:

Homework Answers

Answer #1

We are given the sample standard deviation as s = 7.3 minutes.

The population standard deviation here is = 8.9 minutes.
For n - 1 = 8 - 1 = 7 degrees of freedom, we get from the t distribution tables:
P( -2.998 < t7 < 2.998 ) = 0.98

From standard normal tables we get:
P( -2.326 < Z < 2.326 ) = 0.98

T distribution tables:

Therefore sample mean is computed here as:

Standard normal Tables:

So the 98% confidence interval using standard normal distribution would be given as:

This is the required confidence interval here.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes...
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.4 minutes. A 98​% confidence interval using the​ t-distribution was calculated to be left (27.7,43.3). After researching commute times to​ work, it was found that the population standard deviation is 8.7 minutes. Find the margin of error and construct a 98​% confidence interval using the standard normal distribution with the appropriate calculations for a standard deviation that is known....
In a random sample of 88 ​people, the mean commute time to work was 35.5 minutes...
In a random sample of 88 ​people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.4 minutes. A 98​% confidence interval using the​ t-distribution was calculated to be left (27.7,43.3). After researching commute times to​ work, it was found that the population standard deviation is 8.7 minutes. Find the margin of error and construct a 98% confidence interval using the standard normal distribution with the appropriate calculations for a standard deviation that is known....
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes...
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.2 minutes. A 95​% confidence interval using the​ t-distribution was calculated to be left parenthesis 29.5 comma 41.5 right parenthesis. After researching commute times to​ work, it was found that the population standard deviation is 9.2 minutes. Find the margin of error and construct a 95​% confidence interval using the standard normal distribution with the appropriate calculations for a...
in a random sample of 8 people the mean commute time to work was 34.5 minutes...
in a random sample of 8 people the mean commute time to work was 34.5 minutes and the standard deviation was 7.2 minutes. A 90% confidence interval using the t distribution was calculated to be (29.7, 39.3). After researching commute times to work, it was found that the population standard deviation is 9.2 minutes. Find the margin of error and construct a 90% confidence interval using the standard normal distribution with the appropriate calculations for a standard deviation that is...
In a random sample of 8 ​people, the mean commute time to work was 33.5 minutes...
In a random sample of 8 ​people, the mean commute time to work was 33.5 minutes and the standard deviation was 7.2 minutes. A 90​% confidence interval using the​ t-distribution was calculated to be left parenthesis 28.7 comma 38.3 right parenthesis. After researching commute times to​ work, it was found that the population standard deviation is 9.3 minutes. Find the margin of error and construct a 90​% confidence interval using the standard normal distribution with the appropriate calculations for a...
In a random sample of 88 ​people, the mean commute time to work was 36.536.5 minutes...
In a random sample of 88 ​people, the mean commute time to work was 36.536.5 minutes and the standard deviation was 7.27.2 minutes. A 9898​% confidence interval using the​ t-distribution was calculated to be left parenthesis 28.9 comma 44.1 right parenthesis(28.9,44.1). After researching commute times to​ work, it was found that the population standard deviation is 8.78.7 minutes. Find the margin of error and construct a 9898​% confidence interval using the standard normal distribution with the appropriate calculations for a...
In a random sample of 20 ​people, the mean commute time to work was 32.6 minutes...
In a random sample of 20 ​people, the mean commute time to work was 32.6 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 80​% confidence interval for the population mean mu. What is the margin of error of u​? Interpret the results. The confidence interval for the population mean u is? What is the margin of error?
In a random sample of 28 people, the mean commute time to work was 33.5 minutes...
In a random sample of 28 people, the mean commute time to work was 33.5 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 90​% confidence interval for the population mean muμ. What is the margin of error ofmuμ​?
In a random sample of 22 ​people, the mean commute time to work was 32.1 minutes...
In a random sample of 22 ​people, the mean commute time to work was 32.1 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results.
In a random sample of 18 ​people, the mean commute time to work was 33.1 minutes...
In a random sample of 18 ​people, the mean commute time to work was 33.1 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 98​% confidence interval for the population mean mu . What is the margin of error of mu? Interpret the results. The confidence interval for the population mean mu is: The margin of error of mu is: