Question

In a random sample of twelve ​people, the mean driving distance to work was 24.5 miles...

In a random sample of twelve ​people, the mean driving distance to work was 24.5 miles and the standard deviation was 5.2 miles. Assume the population is normally distributed and use the​ t-distribution to find the margin of error and construct a 90% confidence interval for the population mean μ.

Identify the margin of error.

Construct a 90​% confidence interval for the population mean.

Homework Answers

Answer #1

Margin of error formula (for confidence interval for population mean)

90% confidence interval for the population mean

Given,

Number people in the random sample : Sample size : n =12

Mean driving distance to work : Sample mean : = 24.5

Sample standard deviation : s = 5.2

for 90% confidence level = (100-90)/100 = 0.10

/2 = 0.10/2 = 0.05

Degrees of freedom = n-1 = 12 -1 =11

t0.05,,11 =  1.7959

Margin of error:

Margin of error = 2.6958

90% confidence interval for the population mean

Margin of error = 2.6958
90% confidence interval for the population mean = (21.8042 , 27.1958)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a random sample of six ​people, the mean driving distance to work was 18.3 miles...
In a random sample of six ​people, the mean driving distance to work was 18.3 miles and the standard deviation was 4.3 miles. Assume the population is normally distributed and use the​ t-distribution to find the margin of error and construct a 90​% confidence interval for the population mean mu. Interpret the results. Identify the margin of error.
In a random sample of five ​people, the mean driving distance to work was 24.9 miles...
In a random sample of five ​people, the mean driving distance to work was 24.9 miles and the standard deviation was 4.3 miles. Assuming the population is normally distributed and using the​ t-distribution, a 99​%confidence interval for the population mean mu is left parenthesis 16.0 comma 33.8 right parenthesis ​(and the margin of error is 8.9​). Through​ research, it has been found that the population standard deviation of driving distances to work is 3.3 Using the standard normal distribution with...
In a random sample of five ​people, the mean driving distance to work was 22.9 miles...
In a random sample of five ​people, the mean driving distance to work was 22.9 miles and the standard deviation was 4.9 miles. Assuming the population is normally distributed and using the​ t-distribution, a 95​% confidence interval for the population mean is (16.8, 29.0) ​(and the margin of error is 6.1​). Through​ research, it has been found that the population standard deviation of driving distances to work is 6.2. Using the standard normal distribution with the appropriate calculations for a...
In a random sample of 29 ​people, the mean commute time to work was 30.1 minutes...
In a random sample of 29 ​people, the mean commute time to work was 30.1 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 80​% confidence interval for the population mean μ? What is the margin of error of μ​? Interpret the results.
In a random sample of 22 ​people, the mean commute time to work was 32.1 minutes...
In a random sample of 22 ​people, the mean commute time to work was 32.1 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results.
In a random sample of 28 ​people, the mean commute time to work was 33.6 minutes...
In a random sample of 28 ​people, the mean commute time to work was 33.6 minutes and the standard deviation was 7.1 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results.
In a random sample of 28 people, the mean commute time to work was 33.5 minutes...
In a random sample of 28 people, the mean commute time to work was 33.5 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 90​% confidence interval for the population mean muμ. What is the margin of error ofmuμ​?
In a random sample of eleven cell​ phones, the mean full retail price was 401.00 and...
In a random sample of eleven cell​ phones, the mean full retail price was 401.00 and the standard deviation was 166.00. Assume the population is normally distributed and use the​ t-distribution to find the margin of error and construct a 90​% confidence interval for the population mean μ. 1-Identify the margin of error. 2-Construct a 90​% confidence interval for the population mean.
in a random sample of 17 people, the mean commute time to work was 31.2 minutes...
in a random sample of 17 people, the mean commute time to work was 31.2 minutes and the standard deviation was 7.1 minutes.Assume the population is normally distributed and use a t-distribution to construct a 80% confidence interval for the population mean. what is the margin of error of the mean? interpret the results. the confidence interval for the population mean is ?
In a random sample of 18 ​people, the mean commute time to work was 33.1 minutes...
In a random sample of 18 ​people, the mean commute time to work was 33.1 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 98​% confidence interval for the population mean mu . What is the margin of error of mu? Interpret the results. The confidence interval for the population mean mu is: The margin of error of mu is: