Suppose x has a distribution with μ = 23 and σ = 15. (a) If a random sample of size n = 44 is drawn, find μx, σ x and P(23 ≤ x ≤ 25). (Round σx to two decimal places and the probability to four decimal places.) μx = σ x = P(23 ≤ x ≤ 25) = (b) If a random sample of size n = 64 is drawn, find μx, σ x and P(23 ≤ x ≤ 25). (Round σ x to two decimal places and the probability to four decimal places.) μx = σ x = P(23 ≤ x ≤ 25) = (c) Why should you expect the probability of part (b) to be higher than that of part (a)? (Hint: Consider the standard deviations in parts (a) and (b).) The standard deviation of part (b) is part (a) because of the sample size. Therefore, the distribution about μx is .
Get Answers For Free
Most questions answered within 1 hours.