Question

Coaching companies claim that their courses can raise the SAT scores of high school students. But...

Coaching companies claim that their courses can raise the SAT scores of high school students. But students who retake the SAT without paying for coaching also usually raise their scores. A random sample of students who took the SAT twice found 427 who were coached and 2733 who were uncoached. Starting with their verbal scores on the first and second tries, we have these summary statistics:

                              Try 1      Try 2      Gain

nn x⎯⎯⎯x¯ ss x⎯⎯⎯x¯ ss x⎯⎯⎯x¯ ss
Coached 427 500 92 529 97 29 59
Uncoached 2733 506 101 527 101 21 52

Estimate a 99% confidence interval for the mean gain of all students who are coached.

______to
______at 99% confidence.

Now test the hypothesis that the score gain for coached students is greater than the score gain for uncoached students. Let μ1μ1 be the score gain for all coached students. Let μ2μ2 be the score gain for uncoached students.

(a) Give the alternative hypothesis: μ1−μ2______0.

(b) Give the tt test statistic: ______

(c) Give the appropriate critical value for α=5%:_____

Homework Answers

Answer #1

Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Coaching companies claim that their courses can raise the SAT scores of high school students. But...
Coaching companies claim that their courses can raise the SAT scores of high school students. But students who retake the SAT without paying for coaching also usually raise their scores. A random sample of students who took the SAT twice found 427 who were coached and 2733 who were uncoached. Starting with their verbal scores on the first and second tries, we have these summary statistics:                               Try 1      Try 2      Gain nn x¯¯¯x¯ ss x¯¯¯x¯ ss x¯¯¯x¯...
Do students who take SAT coaching classes improve their test scores? Seven students were selected randomly...
Do students who take SAT coaching classes improve their test scores? Seven students were selected randomly from all of the students who completed an SAT coaching class in a given year. For each student, the first SAT score (before the class) and the second SAT score (after the coaching class) were recorded. The data is summarized below: Student 1 2 3 4 5 6 7 First SAT score 920 820 960 920 1060 860 1010 Second SAT score 1030 800...
A certain test preparation course is designed to improve students' SAT Math scores. The students who...
A certain test preparation course is designed to improve students' SAT Math scores. The students who took the prep course have a mean SAT Math score of 507 while the students who did not take the prep course have a mean SAT Math score of 501. Assume that the population standard deviation of the SAT Math scores for students who took the prep course is 45.7 and for students who did not take the prep course is 32.1 The SAT...
A certain test preparation course is designed to improve students' SAT Math scores. The students who...
A certain test preparation course is designed to improve students' SAT Math scores. The students who took the prep course have a mean SAT Math score of 507 while the students who did not take the prep course have a mean SAT Math score of 501. Assume that the population standard deviation of the SAT Math scores for students who took the prep course is 45.7 and for students who did not take the prep course is 32.1 The SAT...
The scores of students on the SAT college entrance examinations at a certain high school had...
The scores of students on the SAT college entrance examinations at a certain high school had a normal distribution with mean μ=539.3 and standard deviation σ=29.9. (a) What is the probability that a single student randomly chosen from all those taking the test scores 543 or higher? ANSWER:   For parts (b) through (d), consider a simple random sample (SRS) of 35 students who took the test. (b) What are the mean and standard deviation of the sample mean score x¯,...
The scores of students on the SAT college entrance examinations at a certain high school had...
The scores of students on the SAT college entrance examinations at a certain high school had a normal distribution with mean ?=531.7 and standard deviation ?=25.5 consider a simple random sample (SRS) of 30 students who took the test. The standard deviation of the sampling distribution for ?¯ is? What is the probability that the mean score ?¯ of these students is 536 or higher?
The combined SAT scores for the students at a local high school are normally distributed with...
The combined SAT scores for the students at a local high school are normally distributed with a mean of 1528 and a standard deviation of 309. The local college includes a minimum score of 848 in its admission requirements. What percentage of students from this school earn scores that fail to satisfy the admission requirement? P(X < 848) =  % Enter your answer as a percent accurate to 1 decimal place (do not enter the "%" sign). Answers obtained using exact...
The combined SAT scores for the students at a local high school are normally distributed with...
The combined SAT scores for the students at a local high school are normally distributed with a mean of 1471 and a standard deviation of 294. The local college includes a minimum score of 1706 in its admission requirements. What percentage of students from this school earn scores that satisfy the admission requirement? P(X > 1706) =  % Enter your answer as a percent accurate to 1 decimal place (do not enter the "%" sign). Answers obtained using exact z-scores or...
A researcher wants to determine whether high school students who attend an SAT preparation course score...
A researcher wants to determine whether high school students who attend an SAT preparation course score significantly different on the SAT than students who do not attend the preparation course. For those who do not attend the course, the population mean is 1050 (? = 1050). The 16 students who attend the preparation course average 1150 on the SAT, with a sample standard deviation of 300. On the basis of these data, can the researcher conclude that the preparation course...
1.The combined SAT scores for the students at a local high school are normally distributed with...
1.The combined SAT scores for the students at a local high school are normally distributed with a mean of 1495 and a standard deviation of 309. The local college includes a minimum score of 908 in its admission requirements. What percentage of students from this school earn scores that satisfy the admission requirement? P(X > 908) =  % Enter your answer as a percent accurate to 1 decimal place (do not enter the "%" sign). Answers obtained using exact z-scores or...