Question

In large corporations, an "intimidator" is an employee who tries to stop communication, sometimes sabotages others,...

In large corporations, an "intimidator" is an employee who tries to stop communication, sometimes sabotages others, and, above all, likes to listen to him or herself talk. Let x1 be a random variable representing productive hours per week lost by peer employees of an intimidator. x1: 8 2 5 3 2 5 2 A "stressor" is an employee with a hot temper that leads to unproductive tantrums in corporate society. Let x2 be a random variable representing productive hours per week lost by peer employees of a stressor. x2: 2 2 10 8 6 2 5 8 (i) Use a calculator with sample mean and sample standard deviation keys to calculate x1, s1, x2, and s2. (Round your answers to two decimal places.) x1 = s1 = x2 = s2 = (ii) Assuming the variables x1 and x2 are independent, do the data indicate that the population mean time lost due to stressors is greater than the population mean time lost due to intimidators? Use a 5% level of significance. (Assume the population distributions of time lost due to intimidators and time lost due to stressors are each mound-shaped and symmetric.) (a) What is the level of significance? State the null and alternate hypotheses. H0: μ1 = μ2; H1: μ1 ≠ μ2 H0: μ1 = μ2; H1: μ1 > μ2 H0: μ1 = μ2; H1: μ1 < μ2 H0: μ1 < μ2; H1: μ1 = μ2 (b) What sampling distribution will you use? What assumptions are you making? The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations. The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations. The standard normal. We assume that both population distributions are approximately normal with known standard deviations. The Student's t. We assume that both population distributions are approximately normal with known standard deviations. What is the value of the sample test statistic? (Test the difference μ1 − μ2. Do not use rounded values. Round your final answer to three decimal places.) (c) Find (or estimate) the P-value. P-value > 0.250 0.125 < P-value < 0.250 0.050 < P-value < 0.125 0.025 < P-value < 0.050 0.005 < P-value < 0.025 P-value < 0.005 Sketch the sampling distribution and show the area corresponding to the P-value. Maple Generated Plot Maple Generated Plot Maple Generated Plot Maple Generated Plot (d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α? At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. At the α = 0.05 level, we reject the null hypothesis and conclude the data are not statistically significant. At the α = 0.05 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the α = 0.05 level, we reject the null hypothesis and conclude the data are statistically significant. (e) Interpret your conclusion in the context of the application. Reject the null hypothesis, there is insufficient evidence that the mean time lost due to stressors is greater than the mean time lost due to intimidators. Reject the null hypothesis, there is sufficient evidence that the mean time lost due to stressors is greater than the mean time lost due to intimidators. Fail to reject the null hypothesis, there is sufficient evidence that the mean time lost due to stressors is greater than the mean time lost due to intimidators. Fail to reject the null hypothesis, there is insufficient evidence that the mean time lost due to stressors is greater than the mean time lost due to intimidators. Need Help?  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A random sample of 49 measurements from one population had a sample mean of 16, with...
A random sample of 49 measurements from one population had a sample mean of 16, with sample standard deviation 3. An independent random sample of 64 measurements from a second population had a sample mean of 18, with sample standard deviation 4. Test the claim that the population means are different. Use level of significance 0.01. (a) What distribution does the sample test statistic follow? Explain. The Student's t. We assume that both population distributions are approximately normal with known...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1 = 5 had a sample mean of x1 = 11. An independent random sample of n2 = 64 measurements from a second population with population standard deviation σ2 = 6 had a sample mean of x2 = 14. Test the claim that the population means are different. Use level of significance 0.01. (a) Check Requirements: What distribution does the sample test statistic follow? Explain....
The highway department is testing two types of reflecting paint for concrete bridge end pillars. The...
The highway department is testing two types of reflecting paint for concrete bridge end pillars. The two kinds of paint are alike in every respect except that one is orange and the other is yellow. The orange paint is applied to 12 bridges, and the yellow paint is applied to 12 bridges. After a period of 1 year, reflectometer readings were made on all these bridge end pillars. (A higher reading means better visibility.) For the orange paint, the mean...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1 = 3 had a sample mean of x1 = 13. An independent random sample of n2 = 64 measurements from a second population with population standard deviation σ2 = 4 had a sample mean of x2 = 15. Test the claim that the population means are different. Use level of significance 0.01. (a) Check Requirements: What distribution does the sample test statistic follow? Explain....
A random sample of n1 = 49 measurements from a population with population standard deviation σ1...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1 = 5 had a sample mean of x1 = 8. An independent random sample of n2 = 64 measurements from a second population with population standard deviation σ2 = 6 had a sample mean of x2 = 11. Test the claim that the population means are different. Use level of significance 0.01.(a) Check Requirements: What distribution does the sample test statistic follow? Explain. The...
Education influences attitude and lifestyle. Differences in education are a big factor in the "generation gap."...
Education influences attitude and lifestyle. Differences in education are a big factor in the "generation gap." Is the younger generation really better educated? Large surveys of people age 65 and older were taken in n1 = 37 U.S. cities. The sample mean for these cities showed that x1 = 15.2% of the older adults had attended college. Large surveys of young adults (age 25 - 34) were taken in n2 = 38 U.S. cities. The sample mean for these cities...
The Wind Mountain archaeological site is in southwest New Mexico. Prehistoric Native Americans called Anasazi once...
The Wind Mountain archaeological site is in southwest New Mexico. Prehistoric Native Americans called Anasazi once lived and hunted small game in this region. A stemmed projectile point is an arrowhead that has a notch on each side of the base. Both stemmed and stemless projectile points were found at the Wind Mountain site. A random sample of n1 = 55 stemmed projectile points showed the mean length to be x1 = 3.00 cm, with sample standard deviation s1 =...
REM (rapid eye movement) sleep is sleep during which most dreams occur. Each night a person...
REM (rapid eye movement) sleep is sleep during which most dreams occur. Each night a person has both REM and non-REM sleep. However, it is thought that children have more REM sleep than adults†. Assume that REM sleep time is normally distributed for both children and adults. A random sample of n1 = 9 children (9 years old) showed that they had an average REM sleep time of x1 = 2.9 hours per night. From previous studies, it is known...
A random sample of n1 = 10 regions in New England gave the following violent crime...
A random sample of n1 = 10 regions in New England gave the following violent crime rates (per million population). x1: New England Crime Rate 3.5 3.9 4.0 4.1 3.3 4.1 1.8 4.8 2.9 3.1 Another random sample of n2 = 12 regions in the Rocky Mountain states gave the following violent crime rates (per million population). x2: Rocky Mountain Crime Rate 3.9 4.3 4.7 5.3 3.3 4.8 3.5 2.4 3.1 3.5 5.2 2.8 Assume that the crime rate distribution...
A random sample of n1 = 10 regions in New England gave the following violent crime...
A random sample of n1 = 10 regions in New England gave the following violent crime rates (per million population). x1: New England Crime Rate 3.5 3.7 4.2 4.1 3.3 4.1 1.8 4.8 2.9 3.1 Another random sample of n2 = 12 regions in the Rocky Mountain states gave the following violent crime rates (per million population). x2: Rocky Mountain Crime Rate 3.9 4.1 4.5 5.1 3.3 4.8 3.5 2.4 3.1 3.5 5.2 2.8 Assume that the crime rate distribution...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT