Question

Suppose that the random variable X has p.d.f. f(x) = 1 − |x − 1|, if...

Suppose that the random variable X has p.d.f. f(x) = 1 − |x − 1|, if 0 ≤ x ≤ c 0, otherwise . (a) Find the value of c. (b) Find the probability that X > 0.5. (c) Find the mean and variance of the random variable X.

Homework Answers

Answer #1

***please comment if you have any doubts.Happy to help you.Thank you. Please Like.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that the p.d.f of a random variable X is as follows: f(x) = { c/(1−x)^1/2...
Suppose that the p.d.f of a random variable X is as follows: f(x) = { c/(1−x)^1/2 for 0 < x < 1 { 0 otherwise • Find the value of the constant c that makes f a valid probability density function. Sketch it. • Find the value of P(X ≤ 1/2)
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise where c > 0. (a) Determine c. (b) Find the cdf F (). (c) Compute P (-0.5 < X < 0.75). (d) Compute P (|X| > 0.25). (e) Compute P (X > 0.75 | X > 0). (f) Compute P (|X| > 0.75| |X| > 0.5).
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
suppose x is a continuous random variable with probability density function f(x)= (x^2)/9 if 0<x<3 0...
suppose x is a continuous random variable with probability density function f(x)= (x^2)/9 if 0<x<3 0 otherwise find the mean and variance of x
Let X and Y have the joint p.d.f. f(x,y)= 1 when |x2 −y2| < 1        ...
Let X and Y have the joint p.d.f. f(x,y)= 1 when |x2 −y2| < 1         = 0 otherwise 2. Then, (a) Find the marginal distributions of X and Y respectively. (b) Obtain the conditional distribution of Y given X = x, for 0 < x < 1. (c) Find the mean and variance of X only.
The random variable X has the following density function f(x) = ( c(1 + x 2...
The random variable X has the following density function f(x) = ( c(1 + x 2 ) if 0 < x < 1 0 if otherwise a./ Find the value of c. b./ Find E(X). c./ Suppose that the random variable X represents the lifetime of a water filter (of a refrigerator) measured in years. What is the probability that a randomly selected filter will live more than half a year. d./ If a restaurant orders 6 such filters for...
A random variable X has the following pdf f(x)=2x^-3, if x ≥1 0, Otherwise (a) Find...
A random variable X has the following pdf f(x)=2x^-3, if x ≥1 0, Otherwise (a) Find the cdf of X (b) Give a formula for the pth quantile of X and use it to find the median of X. (c) Find the mean and variance of X
Suppose that X is a random variable with pdf f(x) = cxe^(-x) for 0<x<1 and 0...
Suppose that X is a random variable with pdf f(x) = cxe^(-x) for 0<x<1 and 0 elsewhere. a. find the value of c b. find the expectation of x c. find the variance of x
Suppose a random variable has the following probability density function: f(x)=3cx^2 (1-x) 0≤x≤1 a) What must...
Suppose a random variable has the following probability density function: f(x)=3cx^2 (1-x) 0≤x≤1 a) What must c be equal to for this to be a valid density function? b) Determine the mean of x, μ_x c) Determine the median of x, μ ̃_x d) Determine: P(0≤x≤0.5) ?
Suppose that X is an exponential random variable with pdf f(x) = e^(-x),0<x<∞, and zero otherwise....
Suppose that X is an exponential random variable with pdf f(x) = e^(-x),0<x<∞, and zero otherwise. a. compute the exact probability that X takes on a value more than two standard deviations away from its mean. b. use chebychev's inequality to find a bound on this probability
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT