Question

Suppose a random variable has the following probability density function: f(x)=3cx^2 (1-x) 0≤x≤1 a) What must...

Suppose a random variable has the following probability density function: f(x)=3cx^2 (1-x) 0≤x≤1

a) What must c be equal to for this to be a valid density function?

b) Determine the mean of x, μ_x

c) Determine the median of x, μ ̃_x

d) Determine: P(0≤x≤0.5) ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise where c > 0. (a) Determine c. (b) Find the cdf F (). (c) Compute P (-0.5 < X < 0.75). (d) Compute P (|X| > 0.25). (e) Compute P (X > 0.75 | X > 0). (f) Compute P (|X| > 0.75| |X| > 0.5).
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1)...
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1) for x ≥ 1; 0 elsewhere (i) Find P(0.5 < X < 2). (ii) Find the value such that random variable X exceeds it 50% of the time. This value is called the median of the random variable X.
7. For the random variable x with probability density function: f(x) = {1/2 if 0 <...
7. For the random variable x with probability density function: f(x) = {1/2 if 0 < x< 1, x − 1 if 1 ≤ x < 2} a. (4 points) Find the CDF function. b. (3 points) Find p(x < 1.5). c. (3 points) Find P(X<0.5 or X>1.5)
Let X be a continuous random variable with the probability density function f(x) = C x,...
Let X be a continuous random variable with the probability density function f(x) = C x, 6 ≤ x ≤ 25, zero otherwise. a. Find the value of C that would make f(x) a valid probability density function. Enter a fraction (e.g. 2/5): C = b. Find the probability P(X > 16). Give your answer to 4 decimal places. c. Find the mean of the probability distribution of X. Give your answer to 4 decimal places. d. Find the median...
suppose x is a continuous random variable with probability density function f(x)= (x^2)/9 if 0<x<3 0...
suppose x is a continuous random variable with probability density function f(x)= (x^2)/9 if 0<x<3 0 otherwise find the mean and variance of x
6. A continuous random variable X has probability density function f(x) = 0 if x< 0...
6. A continuous random variable X has probability density function f(x) = 0 if x< 0 x/4 if 0 < or = x< 2 1/2 if 2 < or = x< 3 0 if x> or = 3 (a) Find P(X<1) (b) Find P(X<2.5) (c) Find the cumulative distribution function F(x) = P(X< or = x). Be sure to define the function for all real numbers x. (Hint: The cdf will involve four pieces, depending on an interval/range for x....
Suppose that the random variable X has the following cumulative probability distribution X: 0 1. 2....
Suppose that the random variable X has the following cumulative probability distribution X: 0 1. 2. 3. 4 F(X): 0.1 0.29. 0.49. 0.8. 1.0 Part 1:  Find P open parentheses 1 less or equal than x less or equal than 2 close parentheses Part 2: Determine the density function f(x). Part 3: Find E(X). Part 4: Find Var(X). Part 5: Suppose Y = 2X - 3,  for all of X, determine E(Y) and Var(Y)
1. f is a probability density function for the random variable X defined on the given...
1. f is a probability density function for the random variable X defined on the given interval. Find the indicated probabilities. f(x) = 1/36(9 − x2);  [−3, 3] (a)    P(−1 ≤ X ≤ 1)(9 − x2);  [−3, 3] (b)    P(X ≤ 0) (c)    P(X > −1) (d)    P(X = 0) 2. Find the value of the constant k such that the function is a probability density function on the indicated interval. f(x) = kx2;  [0, 3] k=
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln...
The random variable X has probability density function: f(x) = ke^(−x) 0 ≤ x ≤ ln 2 0 otherwise Part a: Determine the value of k. Part b: Find F(x), the cumulative distribution function of X. Part c: Find E[X]. Part d: Find the variance and standard deviation of X. All work must be shown for this question. R-Studio should not be used.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT