Question

Let X be a random variable with a standard normal distribution. Determine the value of t...

Let X be a random variable with a standard normal distribution. Determine the value of t if P(t <= X <= 2) = 0.1000 Give your answer to 4 decimal places.

Homework Answers

Answer #1

Answer:-

Let X be a random variable with a standard normal distribution.

Standard normal distribution is distribution whose mean =0 and standard deviation =1:

i.e, X ~ N(0,1)

Therefore ,

P( t <= X <=2) = 0.1000

P(  (t -0)/1 <= Z <= (2-0)/1 ) =0.1

P(t <= Z <= 2) = 0.1

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A: Let z be a random variable with a standard normal distribution. Find the indicated probability....
A: Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(z ≤ 1.11) = B: Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(z ≥ −1.24) = C: Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(−1.78 ≤ z...
Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round...
Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(z ? ?0.25) Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(z ? 1.24) Let z be a random variable with a standard normal distribution. Find the indicated probability. (Enter your answer to four decimal places.) P(?2.20 ? z ? 1.08)
Let "Z" be a random variable from the standard normal distribution. Find the value for ?...
Let "Z" be a random variable from the standard normal distribution. Find the value for ? that satisfies each of the following probabilities. (Round all answers to two decimal places) A) P(Z < ?) = 0.6829.     ? =   B) P(Z > ?) = 0.3087.     ? =   C) P(-? < Z < ?) = 0.7402.     ? = ±
Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round...
Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(−0.53 ≤ z ≤ 2.04) =
Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round...
Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(−2.10 ≤ z ≤ −0.46)
Let be a standard normal random variable. Use the calculator provided, or this table, to determine...
Let be a standard normal random variable. Use the calculator provided, or this table, to determine the value of P (c is less than or greater to Z is less than or greater to -0.87) =0.1570. Carry your intermediate computations to at least four decimal places. Round your answer to two decimal places
Let z be a random variable with a standard normal distribution. Find the indicated probability. (Enter...
Let z be a random variable with a standard normal distribution. Find the indicated probability. (Enter a number. Round your answer to four decimal places.) P(z ≥ 1.41) = Sketch the area under the standard normal curve over the indicated interval and find the specified area. (Enter a number. Round your answer to four decimal places.) The area between z = 0.41 and z = 1.82 is .
2. Let the random variable Z follow a standard normal distribution, and let z1 be a...
2. Let the random variable Z follow a standard normal distribution, and let z1 be a possible value of Z that is representing the 10th percentile of the standard normal distribution. Find the value of z1. Show your calculation. A. 1.28 B. -1.28 C. 0.255 D. -0.255 3. Given that X is a normally distributed random variable with a mean of 52 and a standard deviation of 2, the probability that X is between 48 and 56 is: Show your...
Let Z be a standard normal random variable. Use the calculator provided, or this table, to...
Let Z be a standard normal random variable. Use the calculator provided, or this table, to determine the value of . P (1.18 _< Z _< c) = 0.0854 Carry your intermediate computations to at least four decimal places. Round your answer to two decimal places.
Let z denote a random variable having a normal distribution with μ = 0 and σ...
Let z denote a random variable having a normal distribution with μ = 0 and σ = 1. Determine each of the following probabilities. (Round all answers to four decimal places.) P(z < −1.5 or z > 2.50) = Let z denote a variable that has a standard normal distribution. Determine the value z* to satisfy the following conditions. (Round all answers to two decimal places.) P(z > z* or z < −z*) = 0.2009 z* =